OmpSs-2@FPGA User Guide
Release 3.2.0

BSC Programming Models

Nov 25, 2024

CONTENTS

1 Install OmpSs-2@FPGA toolchain 3
1.1 PrerequiSites o i i e e e e e e e e 3
1.1.1 GitLarge File Storage e 3

1.1.2 Vendor backends - Xilinx Vivado 3

1.2 Stablerelease e e 3
1.3 Individual it T€POSItOTIES . . .« . v v v v e 4
1.3.1 Accelerator Integration Tool (AIT) i i s it 4

1.3.2 Kernelmodule e 5

1.33 XDMA .« . e 5

1.3.4 xTasks . . . o o o e e 5

L35 0vhl . . .o e e e e 5

1.3.6 Nanos6-fpga o o i e e e e e e e e 6

1.3.7 LLVM/Clango e e 6

2 Develop OmpSs-2@FPGA programs 7
2.1 LImitations e e e e e e e e e e e 7
2.2 Specific differences in clauses and directives in OmpSs-2@FPGA VS OmpSs-2 7
2.3 Clauses of task directive o e e e 8
2.3.1 NUIM_INSTANCES © . v v v v v e e e e e e e e e e e e e e e e e e 8

232 affinity e e e 8

233 0 COPY_IN/OUL . . o v vt it e e e e e e e e e e e e e e e e 8

234 copy_deps e e 9

2.4 CallstoNanos6 AP e 9
2.4.1 Nanos6 FPGA Architecture APT e 9

3 Compile OmpSs-2@FPGA programs 13
3.1 LLVM/Clang FPGA Phase options v i it it i ettt e e e 13
3.1.1 fompss-fpga-wrapper-code e e 13

3.1.2 fompss-fpga-ait-flags oL e e e e 13

3.1.3 fompss-fpga-memory-port-width L 14

3.1.4 fompss-fpga-check-limits-memory-port L 14

3.1.5 fompss-fpga-instrumentation L. oL oL e e e e 14

32 AITOPHONS . .« v v vt e e e e e e e e e e e 14
321 AITOPLONS . . v v v o e 14

3.2.2 Accelerator placement OptoONS oL e e e e e e e e e e e 18

3.2.3 Accelerator interconnect Optionso e e e 21

33 BINArieso e e e e e e e e e e e e e e e e 24
34 BItStream L e e e e e e e e e e 24
34.1 HWInstrumentation ittt e e e e e e e e e e e 25

342 Shared memory POTt o v v i i e e e e e e e e e e e e e e e e e 25

3.5

Boot Files o e e e

Running OmpSs-2@FPGA Programs

4.1
4.2

4.3

4.4

Nanos6 FPGA Architecture configuration
Running OMPIF applications o 0t vttt e e e e e e e
4.2.1 Install cluster SCripts v v v v v e e e e e e e e e e e e e e e
4.2.2 Application eXxecution e e e e e e e
POM AXI-Lite interface memory map o . .ot e e e e e
4.3.1 How toenable the AXI-Lite interface
4.3.2 How toread the registers with QDMA
Ovni FPGA instrumentation o it
441 PrereqUiSites i e e e e e e e e e e e e
442 Runningtheapplication L e
443 ProcessingraCes vt it e e e e e e

Generate boot files for Xilinx SoC boards

5.1

52

53

54
55

6.1

6.2

6.3

6.4

Prerequisites L e e e e e e
5.1.1 PetaLinuxinstallation L
Petalinux project Setup e e e e e e e e
52,1 Unpackthebsp o e e e e e e e e e e
5.2.2 Configure Petalinux L e e e e e e
523 Configure linux kernel L o
Generate boot filesmanually oL
53.1 Add OmpSs@FPGA node tothe devicetreeo
5.3.2 Buildthe Linux system 0 i e e e e e e e e e e e e e
533 Create BOOT.BINfile i s
Use AIT to generate bootfiles
Copy the files to the SD boot partition e
Cluster Installations
Ikergune cluster installation e
6.1.1 Generalremarks e
6.1.2 Modulestructure e e e e e e
6.1.3 Buildapplications e e e e
6.1.4 Running applications L. e e e e e e e e e e e
Xaloc cluster installation oL e e
6.2.1 Generalremarks e
6.2.2 Node specifications e e e e
6.2.3 LoggingintoXaloc e e e e e
6.2.4 Module Structure L. e e
6.2.5 Buildapplications L e e e e e e e e e
6.2.6 Running applications L e
Quar cluster installation L L e e e e e e
6.3.1 Generalremarks. L
6.3.2 Node specifications i vt i e e e e e e e e e e e e e
6.3.3 LoggIN@into qUAT o v v v v e
6.3.4 Modulestructure Ll e e e
6.3.5 Buildapplications L e e e e e e e e e
6.3.6 Running applications L e e
crdbmaster cluster installation L.
6.4.1 Generalremarks e e e e
6.4.2 Node specifications L e
6.4.3 SyStemM OVEIVIEW v v v vttt e e e e e e e e e e e e e e e e e e
6.44 Loggingintothe system e

27
27
28
28
28
29
30
30
30
30
30
31

33
33
33
33
33
34
34
34
35
35
35
35
35

46

6.5

6.6

Index

6.4.5 Module Structure e e e e e e e e e e e e 47

6.4.6 Buildapplications e e e e e e e e e e e 47
6.4.7 Running applications L. e e e e e e e e e e 47
Llebeig cluster installation e 49
6.5.1 Generalremarks L e 49
6.5.2 Loggingintollebeig 49
6.53 Modulestructure L. e e 49
6.5.4 Buildapplications L e e e e e e e e e 50
Meep cluster installation oL e 50
6.6.1 Generalremarks e 50
6.6.2 Node specifications e e e e e e 50
6.6.3 Logginginto MEep o it e e e e e e e e e e e e e e 50
6.6.4 Modulestructure L. L e e e e e e e 51
6.6.5 Buildapplications L. e 51
6.6.6 Running applications L e 51

57

OmpSs-2@FPGA User Guide, Release 3.2.0

The information included in this document is provided “as is”, with no warranties whatsoever, including any warranty
of merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, speci-
fication, or sample. The document is not guaranteed to be complete and/or error-free at this stage and it is subject
to changes without furthernotice. Barcelona Supercomputing Center will not assume any responsibility for errors or
omissions in this document. Please send comments, corrections and/or suggestions to ompss-fpga-support at bsc.es.
This document is provided for informational purposes only.

Note: There is a PDF version of this document at http://pm.bsc.es/ftp/ompss-2-at-fpga/doc/user-guide-3.2.0/
OmpSs2FPGAUserGuide.pdf

CONTENTS 1

http://pm.bsc.es/ftp/ompss-2-at-fpga/doc/user-guide-3.2.0/OmpSs2FPGAUserGuide.pdf
http://pm.bsc.es/ftp/ompss-2-at-fpga/doc/user-guide-3.2.0/OmpSs2FPGAUserGuide.pdf

OmpSs-2@FPGA User Guide, Release 3.2.0

2 CONTENTS

CHAPTER
ONE

INSTALL OMPSS-2@FPGA TOOLCHAIN

This page should help you install the OmpSs-2 @FPGA toolchain. However, it is preferable using the pre-build Docker
image with the latest stable toolchain. They are available at DockerHUB. Moreover, we distribute pre-built SD images
for some SoC. Do not hesitate to contact us at ompss-fpga-support@bsc.es if you need help.

First, it describes the prerequisites to do the toolchain installation. After that, the following sections explain different
approaches to do the installation.

1.1 Prerequisites

* Git Large File Storage (https://git-1fs.github.com/)
* Python 3.7 or later (https://www.python.org/)

* Vendor backends: - Xilinx Vivado 2021.1 or later (https://www.xilinx.com/products/design-tools/vivado.html)

1.1.1 Git Large File Storage

AIT repository uses Git Large File Storage to handle relatively-large files that are frequently updated (i.e. hardware
runtime IP files) to avoid increasing the history size unnecessarily. You must install it so Git is able to download these
files.

Follow instructions on their website to install it.

1.1.2 Vendor backends - Xilinx Vivado

Follow the installation instructions from Xilinx Vitis HLS and Vivado. You will need to enable support for the devices
you’re working on, as well as install the board files for the given devices.

1.2 Stable release

There is a meta-repository that points to latest stable version of all tools: https://github.com/bsc-pm-ompss-at-fpga/
ompss-2-at-fpga-releases. It contains a Makefile which, based on some environment variables, will compile and install
the toolchain. The environment variables are:

e TARGET [Def: native] Linux architecture that toolchain will target
e PREFIX_HOST [Def: /] Installation prefix for the host tools (i.e. llvm, ait)

e PREFIX_TARGET [Def: /] Installation prefix for the target tools (i.e. nanos6, libxdma, libxtasks, ovni)

https://hub.docker.com/r/bscpm/ompss_2_at_fpga
mailto:ompss-fpga-support@bsc.es
https://git-lfs.github.com/
https://www.python.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases
https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases

OmpSs-2@FPGA User Guide, Release 3.2.0

e XTASKS_PLATFORM [Def: gdma] Board platform that xtasks backend will target (i.e. zynq, qdma)

* XDMA_PLATFORM [Def: gdma] Board platform that xdma backend will target (i.e. zynq, qdma)

* BUILDCPUS [Def: nproc] Number of processes used for building

The following example will cross-build the toolchain for the aarch64-linux-gnu architecture and install it in /opt /
bsc/host-armé64/ompss—2 and /opt/bsc/arm64/ompss—2:

git clone --recursive https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-
—releases.git
cd ompss—-2-at-fpga-releases

export
export
export
export
export
make

TARGET=aarch64-1linux—gnu
PREFIX_HOST=/opt/bsc/host-arm64/ompss-2
PREFIX_TARGET=/opt/bsc/armé64/ompss-2
XTASKS_PLATFORM=zyng

XDMA_PLATFORM=zynq

1.3 Individual git repositories

The master branches of all tools should generate a compatible toolchain. Each package should contain information
about how to compile/install itself, look for the README files. The following points briefly describe each tool and
provide a possible build configuration/setup for each one. We assume that all packages will be installed in a Linux OS
in the /opt/bsc/arm64/ompss—2 folder. Moreover, we assume that the packages will be cross-compiled from
an Intel machine to be run on an ARM64 embedded board.

List of tools to install:

e AIT

» Kernel module
¢ xdma

o xtasks

* ovni

* Nanos6-fpga
e LLVM

1.3.1 Accelerator Integration Tool (AIT)

You can install the AIT package through the pip repository python3 -m pip install ait-bsc or cloning
the git repository:

git clone https://github.com/bsc-pm-ompss—-at-fpga/ait

cd ait

git 1fs install

git 1fs pull

export AIT_HOME="/path/to/install/ait"
export DEB_PYTHON_INSTALL_LAYOUT=deb_system
python3 -m pip install . -t SAIT_HOME

export PATH=PREFIX/ait/:S$PATH
export PYTHONPATH=S$AIT_HOME:SPYTHONPATH

Chapter 1. Install OmpSs-2@FPGA toolchain

https://github.com/bsc-pm-ompss-at-fpga/ait
https://github.com/bsc-pm-ompss-at-fpga/ompss-at-fpga-kernel-module
https://github.com/bsc-pm-ompss-at-fpga/xdma
https://github.com/bsc-pm-ompss-at-fpga/xtasks
https://github.com/bsc-pm-ompss-at-fpga/ovni
https://github.com/bsc-pm-ompss-at-fpga/nanos6-fpga
https://github.com/bsc-pm-ompss-at-fpga/llvm

OmpSs-2@FPGA User Guide, Release 3.2.0

1.3.2 Kernel module

The driver is only needed to execute the applications. To compile them, the library must be installed on the host but
the kernel module may not be loaded. Example to cross-compile the driver:

git clone https://github.com/bsc-pm-ompss—-at-fpga/ompss—-at-fpga-kernel-module.git
cd ompss—at—-fpga-kernel-module

export CROSS_COMPILE=aarch64-linux-gnu-—

export KDIR=/home/my_user/kernel-headers

export ARCH=armé64

make

1.3.3 XDMA

Example to cross-compile the library and install it in the /opt /bsc/armé4/ompss-2/1ibxdma folder:

git clone https://github.com/bsc-pm-ompss-at-fpga/xdma.git

cd xdma/src/zyng

export CROSS_COMPILE=aarch64-linux-gnu-—

export KERNEL_MODULE_DIR=/path/to/ompss—at-fpga/kernel/module/src
make

make PREFIX=/opt/bsc/arm64/ompss-2/libxdma install

1.3.4 xTasks

Example to cross-compile the library and install it in the /opt /bsc/armé4/ompss-2/1libxtasks folder:

git clone https://github.com/bsc-pm-ompss-at-fpga/xtasks.git
cd xtasks/src/zyng

export CROSS_COMPILE=aarch64-linux—-gnu-—

export LIBXDMA_DIR=/opt/bsc/armé64/ompss-2/libxdma

make

make PREFIX=/opt/bsc/armé4/ompss—-2/libxtasks install

1.3.5 ovni

Example to cross-compile the library and install it in the /opt /bsc/arm64/ompss—2/1ibovni folder:

git clone https://github.com/bsc-pm-ompss—-at-fpga/ovni.git
mkdir ovni-build
cd ovni-build
cmake \
-DCMAKE_INSTALL_PREFIX=$ (PREFIX_TARGET)/libovni \
-DUSE_MPI=0OFF \
-DCMAKE_C_COMPILER=aarch64-1linux-gnu—-gcc
../ovni
make
make install

1.3. Individual git repositories 5

OmpSs-2@FPGA User Guide, Release 3.2.0

1.3.6 Nanos6-fpga

Example to cross-compile the runtime library and install it in the /opt /bsc/armé64/ompss-2/nanos6-fpga
folder:

git clone https://github.com/bsc-pm-ompss—-at-fpga/nanos6-fpga.git

cd nanos6-fpga

./autogen.sh

mkdir build-fpga-armé64

cd build-fpga-armé64

../configure --prefix=/opt/bsc/armé64/ompss-2/nanos6-fpga —--host=aarch64-linux-gnu \
——enable-fpga \
—-—with-xtasks=/opt/bsc/arm64/ompss-2/libxtasks \
—-—with-ovni=/opt/bsc/arm64/ompss-2/ovni \
-—disable-discrete-deps \
—-—disable-all-instrumentations \
-—enable-stats-instrumentation \
—-—enable-verbose—-instrumentation \
——enable-ovni-instrumentation

make

make install

1.3.7 LLVM/Clang

Example to build a LLVM/Clang cross-compiler that runs on the host and creates binaries for another platform
(ARM64 in the example):

git clone https://github.com/bsc-pm-ompss—-at-fpga/llvm.git

mkdir build-fpga

cd build-fpga

cmake -G Ninja \
-DCMAKE_INSTALL_PREFIX=/opt/bsc/host-armé64/ompss-2/11lvm \
-DLLVM_TARGETS_TO_BUILD="AArch64" \
-DCMAKE_BUILD_TYPE=Release \
-DCLANG_DEFAULT_NANOS6_HOME=/opt/bsc/arm64/ompss-2/nanos6-fpga \
-DLLVM_USE_SPLIT_DWARF=ON \
-DLLVM_ENABLE_PROJECTS="clang" \
-DLLVM_INSTALL_TOOLCHAIN_ONLY=ON \
~DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DLLVM_USE_LINKER=11d \

../1lvm/11lvm

nina

ninja install

6 Chapter 1. Install OmpSs-2@FPGA toolchain

CHAPTER
TWO

DEVELOP OMPSS-2@FPGA PROGRAMS

Most of the required information to develop an OmpSs-2@FPGA application should be in the general OmpSs-2
documentation. Note that, there may be some unsupported/not-working OmpSs-2 features and/or syntax when using
FPGA tasks. If you have some problem or encounter any bug, do not hesitate to contact us or open an issue.

To create an FPGA task you need to add the device clause in the task directive. For example:

const unsigned int LEN = 8;

#pragma oss task device (fpga) out ([LEN]dst, val)
void memset (char % dst, const char val) {
for (unsigned int i=0; 1i<LEN; ++i) {
dst[i] = wval;
}

2.1 Limitations

There are some limitations when developing an OmpSs-2@FPGA application:
¢ Only C/C++ are supported, not Fortran.
* Only function declarations can be annotated as FPGA tasks.

* The HLS source code generated by Clang for each FPGA task will not contain the includes in the original
source file but the ones finished in “.fpga.h”.

* The FPGA task code cannot perform general system calls, and only some Nanos6 APIs are supported.

e The usage of size_t, signed long int orunsigned long int is not recommended inside the
FPGA accelerator code. They may have different widths in the host and in the FPGA.

2.2 Specific differences in clauses and directives in OmpSs-2@FPGA
VS OmpSs-2

Despite OmpSs-2@FPGA mostly follows the OmpSs-2 behaviour, there are specific clauses or directives that are not yet implem
e taskyield and atomic directives are not supported.

e critical directive is supported as OmpSs-2 specifies. Specifically: it implements a global (all acceler-
ators) mutual exclusion section.

https://pm.bsc.es/ftp/ompss-2/doc/user-guide/
https://pm.bsc.es/ftp/ompss-2/doc/user-guide/

OmpSs-2@FPGA User Guide, Release 3.2.0

2.3 Clauses of task directive

The following sections list the clauses that can be used in the task directive.

2.3.1 num_instances

Defines the number of instances to place in the FPGA bitstream of a task. Usage example:

const unsigned int LEN = 8;

#pragma oss task device (fpga) out ([LEN]dst) num_instances (3)
volid memset (char * dst, const char wval) {
for (unsigned int 1=0; i<LEN; ++i) {
dst[i] = wval;
}

2.3.2 affinity

The information in this clause is used at runtime to send the tasks to the corresponding FPGA accelerator. This means
that a FPGA task has the affinity (0) it will run in accelerator O of that type. This clause is useful to manage task
scheduling in the user code when there is more than one accelerator of the same type (num_instances > 1).

const unsigned int LEN = 8;

#pragma oss task device (fpga) out ([LEN]dst) num_instances (4) affinity(af)
void memset_char (char * dst, const char val, int af) {
for (unsigned int i=0; 1<LEN; ++i) {
dst[i] = wval;
}
}

#pragma oss task device (fpga) out ([size]dst)
void memset_task_creator(float % dst, int size, const float wval) {
for (unsigned int 1=0; i<size/LEN; ++1i) {
memset_char (dst + ixLEN, val, i%4);

}

2.3.3 copy_in/out

Defines the memory regions that the FPGA task wrapper must catch in BRAMs/URAMs. This creates a local copy of
the parameter in the FPGA task accelerator which can be accessed faster than dispatching memory accesses. The data
is copied from the FPGA addressable memory into the FPGA task accelerator before launching the task execution.
Depending on the type of clause (copy_in, copy_out, copy_inout), the wrapper includes support for read-
ing/writing the local copy from/into memory. Both input and output data movements, may be dynamically disabled
by the runtime based on its knowledge about task copies and predecessor/successor tasks. Usage example:

const unsigned int LEN = 8;

#pragma oss task device (fpga) out ([LEN]dst) copy_out ([LEN]dst)
void memset (char % dst, const char val) {

(continues on next page)

8 Chapter 2. Develop OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

for (unsigned int 1=0; i<LEN; ++i) {
dst[i] = wval;
}

2.3.4 copy_deps

Promote the task dependencies like they were annotated into the copy clause.

2.4 Calls to Nanos6 API

The list of Nanos6 APIs and their details can be found in the following section. Note that not all Nanos6 APIs can be
called within FPGA tasks and others only are supported within them.

2.4.1 Nanos6 FPGA Architecture API

The following sections list and summarize the Nanos6 FPGA architecture API.

Memory Management

nanos6_fpga_malloc

Allocates memory in the FPGA address space and returns a pointer valid for the FPGA tasks. The returned pointer
cannot be dereferenced in the host code.

Arguments:

* size: Size in bytes to allocate.

» fpga_addr: Pointer to the FPGA address space as a 64-bit integer.
Return value:

¢ NANOS6_FPGA_SUCCESS on success, NANOS6_FPGA_ERROR on error.

typedef enum {
NANOS6_FPGA_SUCCESS,
NANOS6_FPGA_ERROR

} nanos6_fpga_stat_t;

nanos6_fpga_stat_t nanos6_fpga_malloc (uint64_t size, uint64_t+ fpga_addr);

nanos6_fpga_free

nanos6_fpga_stat_t nanos6_fpga_free (uint64_t fpga_addr);

2.4. Calls to Nanos6 API 9

OmpSs-2@FPGA User Guide, Release 3.2.0

nanos6_fpga_memcpy

typedef enum {
NANOS6_FPGA_DEV_TO_HOST,
NANOS6_FPGA_HOST_TO_DEV
} nanos6_fpga_copy_t;

nanos6_fpga_stat_t nanos6_fpga_memcpy (
void* usr_ptr,
uint64_t fpga_addr,
uint64_t size,
nanos6_fpga_copy_t copy_type);

Data copies

These Nanos6 API can only be called inside an FPGA task. They allow copies to be performed through a single port
that can be wider than the data type being copied.

If any of the data copy API calls are used, the fompss-fpga-memory-port-width option is mandatory.

Data accessed through this functions has to be aligned to the port width, otherwise this will result in undefined
behaviour.

Also, data should to be multiple of the port width. If this cannot be guaranteed, fompss-fpga-check-limits-memory-
port option is needed so that no out of bounds data is accessed, otherwise this will result in undefined behaviour.

nanos6_fpga_memcpy_wideport_in

nanos6_fpga_stat_t nanos6_fpga_memcpy_wideport_in(voidx dst, const unsigned long long,
—~int addr, const unsigned int num_elems) ;

Arguments:
* dst: Pointer to the destination (local) data. It can be any data type.
* addr: FPGA memory address space where the data is stored.

* num_elems: Number of elements of the array type to be copied.

nanos6_fpga_memcpy_wideport_out

nanos6_fpga_stat_t nanos6_fpga_memcpy_wideport_out (voidx dst, const unsigned long,,
—~long int addr, const unsigned int num_elems);

Arguments:
* dst: Pointer to the source (local) data. It can be any data type.
¢ addr: FPGA memory address space where the data is written.

* num_elems: Number of elements of the array type to be copied.

10 Chapter 2. Develop OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

OMPIF cluster API

OMPIF is an API that allows direct FPGA-to-FPGA communication.

OMPIF API resembles MPI API with few assumptions and simplifications.
* Data types are not used, raw data and its size in bytes is used instead.
* A single implicit communicator that includes all FPGAs in the cluster is assumed in collectives.
* For send/receive, dependencies can be added for task synchronization.

API calls are defined as follows:

void OMPIF_Send(const void xdata, unsigned int size, int destination, unsigned char
—~tag, unsigned char numDeps, const unsigned long long int deps|[]);

void OMPIF_Recv (void xdata, unsigned int size, int source, unsigned char tag,
—unsigned char numDeps, const unsigned long long int deps[]);

void OMPIF_Allgather (voidx data, unsigned int size);

void OMPIF_Bcast (voidx data, unsigned int size, int root);

unsigned char OMPIF_Comm_rank () ;

unsigned char OMPIF_Comm_size () ;

2.4. Calls to Nanos6 API 11

OmpSs-2@FPGA User Guide, Release 3.2.0

12 Chapter 2. Develop OmpSs-2@FPGA programs

CHAPTER
THREE

COMPILE OMPSS-2@FPGA PROGRAMS

To compile an OmpSs-2@FPGA program you should follow the general OmpSs-2 compilation procedure using the
LLVM/Clang compiler. More information is provided in the OmpSs-2 User Guide (https://pm.bsc.es/ftp/ompss-2/
doc/user-guide/llvm/index.html). The following sections detail the specific options of LLVM/Clang to generate the
binaries, bitstream and boot files.

The entire list of LLVM/Clang options (for the FPGA phase) and AIT arguments are available here:

3.1 LLVM/Clang FPGA Phase options

The following sections list and summarize the LLVM/Clang options from the FPGA Phase.

Note: Do not forget the flag —~fompss—2 in both compilation and linking stages of your application. Otherwise,
your application will not be compiled with parallel support or not linked to the tasking runtime library.

3.1.1 fompss-fpga-wrapper-code

[Available in release 2.0.0]
Enables FPGA task extraction into independent HLS wrappers.

This option is mandatory when generating a bitstream.

clang —-fompss—-2 —-fompss-fpga-wrapper—-code \
-fompss-fpga-ait-flags "--board=alveo_u200 —--name=dotproduct" \
src/dotproduct.c -o dotproduct

3.1.2 fompss-fpga-ait-flags

[Available in release 2.0.0]
String of whitespace-separated list of AIT flags that will be passed to the tool. Also enables AIT on the linking stage.

This option is mandatory when generating a bitstream.

clang —fompss—-2 —-fompss—-fpga-wrapper—-code \
~-fompss-fpga-ait-flags "--board=alveo_u200 --name=dotproduct" \
src/dotproduct.c -o dotproduct

13

https://pm.bsc.es/ftp/ompss-2/doc/user-guide/llvm/index.html
https://pm.bsc.es/ftp/ompss-2/doc/user-guide/llvm/index.html

OmpSs-2@FPGA User Guide, Release 3.2.0

3.1.3 fompss-fpga-memory-port-width

[Available in release 2.0.0]
Enables wide-port feature of OmpSs @ FPGA.

Accelerator memory interfaces will be merged into a single wide-port of arbitrary power-of-2 size. Code inside the
wrapper will be generated in order to pack and unpack local variables when reading and writing from memory.

clang —-fompss-2 -fompss—-fpga-wrapper-code \
—fompss-fpga-ait-flags "--board=alveo_u200 —--name=dotproduct" \
-fompss-fpga-memory-port-width 512 \
src/dotproduct.c -o dotproduct

3.1.4 fompss-fpga-check-limits-memory-port

[Available in release 2.0.0]

By default the compiler assumes that all the data that has to be copied to and from memory is multiple of the wide-port
size.

This option adds checks inside the pack/unpacking code to manage copies smaller than the wide-port size.

clang —-fompss-2 -fompss—-fpga-wrapper-code \
—~fompss-fpga-ait-flags "--board=alveo_u200 —--name=dotproduct" \
-fompss-fpga-check-limits-memory-port \
src/dotproduct.c -o dotproduct

3.1.5 fompss-fpga-instrumentation

[Available in release 3.1.0]
Enables HW instrumentation.

This option will add nanos6 FPGA instrumentation API function needed to trace dependency copies and kernel exe-
cution.

clang —-fompss—-2 —-fompss—-fpga-wrapper—-code \
~fompss-fpga-ait-flags "--board=alveo_u200 —--name=dotproduct" \
—fompss—-fpga—-instrumentation \
src/dotproduct.c -o dotproduct

3.2 AIT options

3.2.1 AIT options

The AIT behavior can be modified with the available options. They are summarized and briefly described in the AIT
help, which is:

usage: ait -b BOARD —-n NAME
The Accelerator Integration Tool (AIT) automatically integrates OmpSs@FPGA
—accelerators into FPGA designs using different vendor backends.

(continues on next page)

14 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

Required:
-b BOARD, --board BOARD
board model. Supported boards by vendor:
xilinx: alveo_u200, alveo_u250, alveo_u280, alveo_u280_hbm,
—alveo_ub5c, com_express, kv260, simulation, zcul02, zedboard, zybo, zyng702, zyng706
-n NAME, --name NAME project name

Generation flow:
-d DIR, —--dir DIR path where the project directory tree will be created
(def: '"./")
——disable_IP_caching disable IP caching. Significantly increases generation time
——disable_utilization_check
disable resources utilization check during HLS generation
——disable_board_support_check
disable board support check
——from_step FROM_STEP
initial generation step. Generation steps by wvendor:
xilinx: HLS, design, synthesis, implementation, bitstream,
—boot
(def: 'HLS')
——IP_cache_location IP_CACHE_LOCATION
path where the IP cache will be located
(def: '/var/tmp/ait/<vendor>/IP_cache/")
-—to_step TO_STEP final generation step. Generation steps by vendor:
xilinx: HLS, design, synthesis, implementation, bitstream,
—boot
(def: 'bitstream')

Bitstream configuration:

-c CLOCK, --clock CLOCK
FPGA clock frequency in MHz
(def: '100")
—-—hwcounter add a hardware counter to the bitstream

—--wrapper_version WRAPPER_VERSION
version of accelerator wrapper shell. This information will
—be placed in the bitstream information
——bitinfo_note BITINFO_NOTE
custom note to add to the bitInfo

Data path:
—-—datainterfaces_map DATAINTERFACES_MAP
path of mappings file for the data interfaces
—--memory_interleaving_stride MEM_INTERLEAVING_STRIDE
size in bytes of the stride of the memory interleaving. By,
—default there is no interleaving
——disable_creator_ports
Disable memory access ports in the task-creation accelerators

Hardware Runtime:
—-—cmdin_queue_len CMDIN_QUEUE_LEN
maximum length (64-bit words) of the queue for the hwruntime
—command in
This argument is mutually exclusive with —--cmdin_subqueue_len
—--cmdin_subqgqueue_len CMDIN_SUBQUEUE_LEN
length (64-bit words) of each accelerator subqueue for the
—hwruntime command in.
This argument is mutually exclusive with --cmdin_queue_len

(continues on next page)

3.2. AIT options 15

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

Must be power of 2
Def. max (64, 1024/num_accs)
——cmdout_queue_len CMDOUT_QUEUE_LEN
maximum length (64-bit words) of the queue for the hwruntime
—command out
This argument is mutually exclusive with --cmdout_subqueue_len
——cmdout_subqueue_len CMDOUT_SUBQUEUE_LEN
length (64-bit words) of each accelerator subqueue for the
—hwruntime command out. This argument is mutually exclusive with --cmdout_queue_len
Must be power of 2
Def. max (64, 1024/num_accs)
—-—-disable_spawn_gueues
disable the hwruntime spawn in/out queues
——-spawnin_queue_len SPAWNIN_QUEUE_LEN
length (64-bit words) of the hwruntime spawn in queue. Must,
—be power of 2
(def: '1024")
——spawnout_queue_len SPAWNOUT_QUEUE_LEN
length (64-bit words) of the hwruntime spawn out queue. Must,,
—be power of 2
(def: '1024")
——hwruntime_interconnect HWR_INTERCONNECT
type of hardware runtime interconnection with accelerators
centralized
distributed
(def: 'centralized')
——max_args_per_task MAX_ARGS_PER_TASK
maximum number of arguments for any task in the bitstream
(def: '15")
——max_deps_per_task MAX_DEPS_PER_TASK
maximum number of dependencies for any task in the bitstream
(def: '8")
—--max_copies_per_task MAX COPIES_PER_TASK
maximum number of copies for any task in the bitstream
(def: '15")
——enable_pom_axilite enable the POM axilite interface with debug counters

Picos:
—-picos_num_dcts NUM_DCTS
number of DCTs instantiated
(def: '1")
—--picos_tm_size PICOS_TM_SIZE
size of the TM memory
(def: '128")
—--picos_dm_size PICOS_DM_SIZE
size of the DM memory
(def: '512")
—--picos_vm_size PICOS_VM_SIZE
size of the VM memory
(def: '512")
—--picos_dm_ds DATA_STRUCT
data structure of the DM memory
BINTREE: Binary search tree (not autobalanced)
LINKEDLIST: Linked list
(def: 'BINTREE')
——-picos_dm_hash HASH_FUN
hashing function applied to dependence addresses

(continues on next page)

16 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

P_PEARSON: Parallel Pearson function

XOR

(def: 'P_PEARSON')
—-picos_hash_t_size PICOS_HASH_T_SIZE

DCT hash table size

(def: '64")

User-defined files:
——user_constraints USER_CONSTRAINTS
path of user defined constraints file
——-user_pre_design USER_PRE_DESIGN
path of user TCL script to be executed before the design step,
— (not after the board base design)
—-user_post_design USER_POST_DESIGN
path of user TCL script to be executed after the design step

Miscellaneous:

-h, --help show this help message and exit
-i, —-verbose_info print extra information messages
——dump_board_info dump board info json for the specified board

-j JOBS, —--jobs JOBS specify the number of jobs to run simultaneously
By default it will use as many jobs as cores with at least,
—5GB of dedicated free memory, or the value returned by “nproc™, whichever is less.
—--mem_per_job MEM_PER_JOB
specify the memory per core used to estimate the number of
—Jjobs to launch (def: 5G)

-k, ——keep_files keep files on error
-v, —-verbose print vendor backend messages
——-version print AIT version and exits

Xilinx-specific arguments:
——floorplanning_constr FLOORPLANNING_CONSTR
built-in floorplanning constraints for accelerators and,
—static logic
acc: accelerator kernels are constrained to a SLR region
static: each static logic IP is constrained to its relevant,
—SLR
all: enables both 'acc' and 'static' options
By default no floorplanning constraints are used
—-—-placement_file PLACEMENT_FILE
json file specifying accelerator placement
——slr_slices SLR_SLICES
enable SLR crossing register slices
acc: create register slices for SLR crossing on accelerator-
—related interfaces
static: create register slices for static logic IPs
all: enable both 'acc' and 'static' options
By default they are disabled
—-regslice_pipeline_stages REGSLICE_PIPELINE_STAGES
number of register slice pipeline stages per SLR
'x:y:z': add between 1 and 5 stages in master:middle:slave
—SLRs
auto: let Vivado choose the number of stages
(def: auto)
——interconnect_regslice INTER_REGSLICE_LIST [INTER_REGSLICE_LIST ...]
enable register slices on AXI interconnects
all: enables them on all interconnects

(continues on next page)

3.2. AIT options 17

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

mem: enables them on interconnects in memory datapath
hwruntime: enables them on the AXI-stream interconnects,,
—between the hwruntime and the accelerators
——interconnect_opt OPT_STRATEGY
AXI interconnect optimization strategy: Minimize 'area' or,
—maximize 'performance'
(def: 'area')
——interconnect_priorities
enable priorities in the memory interconnect
—--simplify_interconnection
simplify interconnection between accelerators and memory.
—Might negatively impact timing
—-—power_monitor enable power monitoring infrastructure
——thermal_monitor enable thermal monitoring infrastructure
——debug_intfs INTF_TYPE
choose which interfaces mark for debug and instantiate the
—correspondent ILA cores
AXI: debug accelerator's AXI interfaces
stream: debug accelerator's AXI-Stream interfaces
both: debug both accelerator's AXI and AXI-Stream interfaces
custom: debug user-defined interfaces
none: do not mark for debug any interface
(def: 'none')
—-—debug_intfs_list DEBUG_INTFS_LIST
path of file with the list of interfaces to debug
——ignore_eng_sample ignore engineering sample status from chip part number
——target_language TARGET_LANG
choose target language to synthesize files to: vhdl or verilog
(def: 'verilog')

environment variables:
PETALINUX_BUILD path where the Petalinux project is located

3.2.2 Accelerator placement options

This section documents how to constrain accelerators to a particular SLR region in a device.
There are three flags that control accelerator placement:

e Constraints: ——floorplanning_constr

e Slices: ——slr_slices

* Configuration file ——placement_file
On an Alveo U200, which has 3 Super logic regions, external interfaces are placed as follows:

By default, all user accelerators are placed as vivado considers. Sometimes it places a kernel accelerator between 2
SLR, usually negatively impacting timing. Users can enforce accelerators to be constrained to an slr region in order to
prevent it from being scattered across multiple SLR. For instance, a user can specify something as follows:

Additionally, users can apply register slices between the SLR crossings to further help timing at the cost of using
additional fpga resources. Users can control this by setting different settings for constraints and register slices. For
example, activating register slices for the previous design will result in the following layout:

User flags

18 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

SLR2

(x}=—cie

SLR1

SLRO

Fig. 1: Interface layout for Alveo U200

ACC

SLR2

ACC \

PCle

>

SLR1

ACC

SLRO

Fig. 2: Placed instance diagram

3.2. AIT options

19

OmpSs-2@FPGA User Guide, Release 3.2.0

g

ACC

SLR2

Reg ince]—[Reg slice

- @@

N

X PCle
| ACC kW

SLR1
h@‘@—{hg ince]—[Reg slice

ACC

SEEN

T

g

SLRO

Fig. 3: Placed instance diagram with register slices

Constraints

Constraints affecting different sets of IPs can be individually enabled. This is done by setting the
-—floorplanning_constr=<constraint level> flag. This can take four different values: [none], acc,
static, all.

These are specified as follows:

[none]

Nothing is constrained to a particular region. This is the default behavior.

This is done by not specifying the -——floorplanning_constr

acc

Accelerator kernels are constrained to be in a slr region.

static

Static logic is constrained to a particular region. Each of the static logic IP is constrained to its relevant region. For
instance PCI IP is going to be constrained to the slr that contains it IO pins, which is SLR 1 in the case of the U200.

20 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

all

Enables acc and static

Slices

Slices can be automatically placed in SLR crossings to improve timing. ——slr_slices flag controls the settings. It
can take four different values: [none], acc, static, all.

[none]

No register slices are created for slr crossing, this is the default behaviour.

This is achieved by omitting ——s1lr_slices flag.

acc

Register slices for SLR crossing are created for accelerator related interfaces: - Accelerator - hw runtime - Accelerator
- DDR interconnect

static

Register slices are created for static logic (DDR MIGs, PCI, communication infrastructure, etc.).

all

Enables both acc and static.

Configuration file

Configuration file is a json file that determines the placement of each accelerator instance. It’s specified using the
——placement_file option. It should contain a dictionary of accelerator types Each accelerator type must contain
a list of SLR numbers, one for each instance, indicating where the accelerator is going to be placed. For instance:

{

"calculate_forces_BLOCK" : [0, O, 1, 2, 2],
"solve_nbody task": [1],
"update_particles_BLOCK": [1]

This constrains 2 of the 4 calculate_ forces_BLOCK accelerators to be in SLRO, one of them in SLR1 and the
remaining 2 in SLR2. Also, solve_nbody_task and update_particles_BLOCK will be placed in SLRI1.

3.2.3 Accelerator interconnect options
Simplified interconnect

By default, memory interconnection is implemented as 2 interconnection stages:

3.2. AIT options 21

OmpSs-2@FPGA User Guide, Release 3.2.0

Fig. 4: 2 stage interconnection

This is done in order to save resources in the case that there’s data access ports. However, this serializes data accesses.
This prevents accelerators from accessing different memory banks in parallel.

By setting the ——simplify_interconnection will result in the following:

Fig. 5: Simplified interconnection

When also setting ——interconnect_opt=performance can allow accelerators to concurrently access different
banks, effectively increasing overall available bandwidth. Otherwise, accesses will not be performed in parallel as the
interconnect is configured in “area” mode.

However, the downside is that this can affect timing and resource usage when this interconnection mode is enabled.

Memory access interleave

By default, FPGA memory is allocated sequentially. By setting the
--memory_interleaving_stride=<stride> option will result in allocations being placed in differ-
ent modules each stride bytes. Therefore accelerator memory accesses will be scattered across the different memory
interfaces.

For instance, setting ——memory_interleaving_stride=4096. Will result in the first 4k being allocated to
bank 0, next 4k are allocated info bank 1, and so on.

This may improve accelerator memory access bandwidth when combined with Simplified interconnect and Intercon-
nect optimization strategy options:

Fig. 6: Simplified interconnection with memory interleaving

22 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

Interconnect optimization strategy
Option ——interconnect_opt=<optimization strategy> defines the optimization strategy for AXI in-
terconnects.

This option only accepts area or per formance strategies. While area results in lower resource usage, performance
is lower than the performance setting.

In particular, using area prevents access from different slaves into different masters do be performed in parallel. This
is specially relevant when using Simplified interconnect.

See also Xilinx PG059 for more details on the different strategies.

Interconnect register slices
By specifying —-—interconnect_regslice=<interconnect group> option, it enables outer and auto reg-
ister slice mode on selected interconnect cores.

This mode places an extra outer register between the inner interconnect logic (crossbar, width converter, etc.) and the
outer core slave interfaces. It also places an auto register slice if the slave interface is in the same clock domain. See
Xilinx PGO59 for details on these modes.

Interconnect groups are defined as follows:
e all: enables them on all interconnects.
* mem: enables them on interconnects in memory data path (accelerator - DDR)

* hwruntime: enables them on the AXI-stream interconnects between the hwruntime and the accelerators (ac-
celerator control)

Interface debug
Interfaces can be set up for debugging through ILA cores. By setting debugging options, different buses will be set up
for debugging and the corresponding ILA cores are generated as needed.

There are two modes to set wup debugging, By enabling debug in interface group
through -—debug_intf=<interface group> or selecting individual interfaces using
——debug_intf_list=<interface list files>.

Interface group selection

Interfaces can be marked for debug in different groups specified in the -——debug_intf=<interface group>:
e AXT: Debug accelerator’s AXI 4 memory mapped data interfaces interfaces
¢ stream: Debug accelerator’s AXI-Stream control interfaces
* both: Debug both AXT and st ream interface groups.
* custom: Debug user-defined interfaces

* none: Do not mark for debug any interface (this is the default behaviour)

3.2. AIT options 23

https://docs.amd.com/r/en-US/pg059-axi-interconnect
https://docs.amd.com/r/en-US/pg059-axi-interconnect

OmpSs-2@FPGA User Guide, Release 3.2.0

Interface list

Al list of interfaces can be specified in order to enable individual interfaces through the
-—debug_intf_list=<interface list files> option.

Interface list contains a list of interface paths, one for each line. Interface paths are block design connection paths. Ait
creates an interface list with all accelerator data interfaces named <project name>.datainterfaces.txt.
First column is the slave end (origin) of the connection and second column specifies the master (destination) end.

Accelerator data interfaces are specified as

<accelerator>_<0>/<accelerator>_ompss/<interface name>

For instance to debug interface x and y from accelerator foo interface list should look as follows:

/foo_0/foo_ompss/m_axi_mcxx_x
/foo_0/foo_ompss/m_axi_mcxx_y

3.3 Binaries

To compile applications with LLVM/Clang you must add the flag —fompss—2 when using either:
e clang++ for C++ applications.

¢ clang for C applications.

3.4 Bitstream

Note: LLVM/Clang expects the Accelerator Integration Tool (AIT) to be available on the PATH, if not the linker will
fail. Moreover, AIT expects Vitis HLS and Vivado to be available in the PATH.

Warning: Sourcing the Vivado settings. sh file may break the cross-compilation toolchain. Instead, just add
the directory of vivado binaries in the PATH.

To generate the bitstream, you should enable the bitstream generation in the LLVM/Clang compiler (us-
ing the -fompss-fpga-wrapper-code flag) and provide the FPGA linker (aka AIT) flags with
-fompss—-fpga-ait-flags option. If the FPGA linker flags does not contain the —b (or ——board) and —n
(or ——name) options, the linker phase will fail.

For example, to compile the dotproduct application, in debug mode, for the Alveo U200, with a target frequency of
300Mhz, you can use the following command:

clang —-fompss—-2 —-fompss-fpga-wrapper—-code \
src/dotproduct.c —-o dotproduct-d \
—fompss—fpga-ait-flags "--board=alveo_u200 --clock=300 —--name=dotproduct"

24 Chapter 3. Compile OmpSs-2@FPGA programs

OmpSs-2@FPGA User Guide, Release 3.2.0

3.4.1 HW Instrumentation

You must use the ~-fompss-fpga-instrumentation option of LLVM/Clang to enable the HW instrumentation
generation. Keep in mind that a bitstream generated with instrumentation support will hang if instrumentation is not
enabled at the runtime level.

For example, the previous compilation command with the instrumentation available will be:

clang —-fompss—-2 -fompss-fpga-wrapper—-code \
src/dotproduct.c -o dotproduct-d \
—fompss—-fpga—-instrumentation \
—fompss—-fpga-ait-flags "--board=alveo_u200 --clock=300 —--name=dotproduct"

3.4.2 Shared memory port

By default, LLVM/Clang generates an independent port to access the main memory for each task argument. Moreover,
the bit-width of those ports equals to the argument data type width. This can result in a huge interconnection network
when there are several task accelerators or they have several non-scalar arguments.

This behavior can be modified to generate unique shared port to access the main memory between all task arguments.
This is achieved with the —fompss—-fpga-memory-port-width option of LLVM/Clang which defines the de-
sired bit-width of the shared port. The value must be a common multiple of the bit-widths for all task arguments.

The usage of the LLVM/Clang variable to generate a 128 bit port in the previous dotproduct command will be like:

clang —-fompss—-2 —-fompss—-fpga-wrapper—-code \
src/dotproduct.c -o dotproduct-d \
-fompss-fpga-memory-port-width 128 \
—-fompss—-fpga-ait-flags "--board=alveo_u200 --clock=300 --name=dotproduct"

3.5 Boot Files

Some boards do not support loading the bitstream into the FPGA after the boot, therefore the boot files should be
updated and the board rebooted. AIT supports the generation of boot files for some boards but the step is disabled by
default and should be enabled by hand.

First, you need to set the following environment variables:

e PETALINUX_BUILD. Petalinux project directory. See Generate boot files for Xilinx SoC boards to have
more information about how to setup a petalinux project build.

Then you can invoke AIT with the same options provided in —~fompss—-fpga-ait-flags and the following new
options: ——from_step=boot --to_step=boot. Also, you may directly add the ——to_step=boot option
in —-fompss—-fpga—-ait-flags during the LLVM/Clang launch.

3.5. Boot Files 25

OmpSs-2@FPGA User Guide, Release 3.2.0

26 Chapter 3. Compile OmpSs-2@FPGA programs

CHAPTER
FOUR

RUNNING OMPSS-2@FPGA PROGRAMS

To run an OmpSs-2@FPGA program you should follow the general OmpSs-2 run procedure. More information is
provided in the OmpSs-2 User Guide.

4.1 Nanos6 FPGA Architecture configuration

The Nanos6 behavior can be tuned with different configuration options. They are summarized and briefly described
in the Nanos6 default configuration file as well as in the OmpSs-2 user guide, the FPGA architecture section is shown
below:

[devices]
directory = true
[devices. fpgal
Enable/disable the reverse offload service
reverse_offload = false
Byte alignment of the fpga memory allocations
alignment = 16
If xtasks supports async copies, it can be "async", if not, the,
—runtime can use the default xtasks memcpy and
simulate an asynchronous copy spawning a new thread with "forced
—async". Copies can also be synchronous with "sync".
mem_sync_type = "sync"
page_size = 0x8000
requested_fpga_memory = 0x40000000
Enable FPGA device service threads. It is useful to disable them,
—when using the broadcaster, because in that case the
FPGAs are handled by the broadcaster device service and the FPGA_
—services are not used.

enable_services = true
Maximum number of FPGA tasks running at the same time
streams = 16

[devices. fpga.polling]

Indicate whether the FPGA services should constantly run,
—while there are FPGA tasks

running on their FPGA. Enabling this option may reduce the_
—latency of processing FPGA

tasks at the expenses of occupying a CPU from the system._
—Default is true

pinned = true

The time period in microseconds between FPGA service runs._
—During that time, the CPUs

occupied by the services are available to execute ready,,
—~tasks. Setting this option to 0

(continues on next page)

27

https://pm.bsc.es/ftp/ompss-2/doc/user-guide/index.html
https://pm.bsc.es/ftp/ompss-2/doc/user-guide/nanos6/index.html

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

makes the services to constantly run. Default is 1000
period_us = 1000

4.2 Running OMPIF applications

Multi-node multi-fpga applications developed using the OMPIF cluster API need special setup that is not needed in
regular OmpSs @FPGA applications.

4.2.1 Install cluster scripts

This includes loading bitstreams into the allocated FPGAs and setting up routing tables.

This tasks are automated for the meep machine by a series of scripts:

https://pm.bsc.es/gitlab/ompss-at-fpga/rtl/meep-ompss-fpga-cluster.git

This path is referred as SMEEP__SCRIPTS throughout the document.

4.2.2 Application execution

This section covers cluster environment setup and application execution. It is assumed that vivado and
xtasks_server are available in the path. The xtasks_server binary is in the xtasks installation path
S{XTASKS_INSTALL} /bin.

If application is to be run using multiple FPGAs in the same node, Start xtasks servers can be skipped.
Creating cluster description file

A json file describing the cluster needs to be created for the cluster to be automatically configured. It contains, for
each FPGA, its index inside the node, the node index and the bitstream:

[
{ "fpga": FPGA_INDEX, "node": NODE_INDEX, "bitstream": BITSTREAM_ PATH }

]

The following example configures a cluster using 4 FPGAs in 2 different nodes (2 FPGAs each node):

[

{ "node": 1, "fpga": 1, "bitstream" : "bitstream.bit" },
{ "node": 1, "fpga": 2, "bitstream" : "bitstream.bit" },
{ "node": 2, "fpga": 1, "bitstream" : "bitstream.bit" },
{ "node": 2, "fpga": 2, "bitstream" : "bitstream.bit" }

Information regarding FPGAs, can be found in /et c/motd in each of the FPGA nodes.

Configuring the FPGA cluster

Once the cluster file is created, the cluster can be configured using the create_cluster.py script from the
meep-ompss—fpga-cluster repo:

28 Chapter 4. Running OmpSs-2@FPGA Programs

OmpSs-2@FPGA User Guide, Release 3.2.0

python3 SMEEP_SCRIPTS/scripts/create_cluster.py cluster. json

If there are FPGAs on remote nodes, the script will automatically launch servers and connect to them. For each node,
a log file ${NODENAME}_fpga_mng.log is created in the home directory. You can change the path with the
--log_prefix flag. Also, for each node the script creates the xtasks_devs_$ (hostname) . sh file, with the
XTASKS_PCI_DEV and XDMA_QDMA_DEV environment variables. By default it is created in the current working
directory, but it can be changed with the ——xtasks_cluster_prefix flag. The use of this file is explained in
Start xtasks servers. The script also creates the xtasks.cluster file needed by your application in the current
working directory. This file must be in the same directory where you launch the application, or also you can set the
path in the XTASKS_CLUSTER_FILE environment variable. If not, the application will assume you are executing in
single-node mode, and will not connect to the remote servers.

Start xtasks servers

A remote server that listens for FPGA tasks needs to be started in each of the remote nodes:

python3 SMEEP_SCRIPTS/scripts/launch_servers.py cluster.json —--xtasks

Log files are created in the home directory named $ {NODENAME}_xtasks.log. You can change the path with
the ——log_prefix flag. The script launches the server in the current working directory, so you must have the
xtasks.cluster file in the same directory. For the moment, it can’t be set with an environment variable. Also, by
default all xtasks_devs_$ (hostname) . sh files must be in the current directory as well. However, you can set
another path with the ——script_prefix flag. Then, the cluster application can be run as usual.

Debugging
There are many debug registers that can be read with QDMA, including the number of received messages, number of

corrupted messages, number of send/receive tasks, etc. More details in POM AXI-Lite interface memory map.

4.3 POM AXI-Lite interface memory map

The POM hardware runtime includes an optional AXI-Lite interface to access internal debug registers (read-only).
The mapped address space is 16KB (14-bit addresses).

The available registers and their respective addresses are (size in bytes):

Register name Ad- Size Description
dress
COPY_OPT_IN 0x0 4 Number of copy in optimizations in the command in queue (both inter-
nal and external)
COPY_OPT_OUT | 0x4 4 Number of copy in optimizations in the command in queue (both inter-
nal and external)
ACC_AVAIL 0x8 8 One bit per accelerator, indicating the availability status
QUEUE_NEMPTY | 0x10 8 One bit per accelerator, indicating if the internal queue is not empty
CMD_IN_N_CMDS 0x800 4 per | For each accelerator, the number of commands it has received
acc
CMD_OUT_N_CMD8x900 4 per | For each accelerator, the number of commands it has issued
acc
ACC_AVAIL_COUNDxAO0 | 8 per | For each accelerator, the total number of execution cycles
acc

4.3. POM AXI-Lite interface memory map 29

OmpSs-2@FPGA User Guide, Release 3.2.0

4.3.1 How to enable the AXI-Lite interface

You can enable it with the ——enable_pom_axilite flag in AIT. For a full list of AIT options, see AIT options

4.3.2 How to read the registers with QDMA

You can use the script located in the https://pm.bsc.es/gitlab/ompss-at-fpga/rtl/meep-ompss-fpga-cluster repository,
under scripts/axilite_cntrl.py.

python3 $SMEEP-OMPSS-FPGA-CLUSTER/scripts/axilite_cntrl.py —--read_pom

The script needs the XTASKS_PCI_DEV variable.

If you are using OMPIF, you can read all registers, including the message sender and receiver, with the cluster.
json file.

python3 SMEEP-OMPSS-FPGA-CLUSTER/scripts/axilite_cntrl.py —--cluster cluster.json

If some FPGAs are on remote nodes, the script automatically launches servers on each remote node. However, you
need to have the xtasks_devs_$ (hostname) . sh files in the current working directory.

4.4 Ovni FPGA instrumentation

FPGA accelerator instrumentation is provided via ovni. By default, dependency copies and kernel execution are traced
when instrumentation is enabled.

4.4.1 Prerequisites

The bitstream needs to be compiled with instrumentation support to create trace accelerator events. Instrumentation
can be enabled by adding the ~fompss—-fpga-instrumentation flag when building the bitstream. More details
on building OmpSs@FPGA applications are available in the Compile OmpSs-2@ FPGA programs section.

Also, ovni and paraver need to be installed to create and visualize traces. Ovni is automatically installed and updated
in cluster installations.

4.4.2 Running the application

Enabling instrumentation

Instrumentation needs to be enabled in nanos6 configuration toml file. The default file is located in the nanos6 instal-
lation directory.

SOMPSS_FPGA_HOME/bsc/x86_64/ompss—2/<release>/nanos6/share/nanos6.toml

SOMPSS_FPGA_HOME is defined by the OmpSs@FPGA environment module. The release is the specific release
that is being used, 3.2 .1 or git, for instance.

This file can be copied to the working directory to edit it and override default nanos6 settings. For instance, to copy
the configuration file from the git release, run:

cp $OMPSS_FPGA_HOME/bsc/x86_64/ompss—-2/git/nanos6/share/nanos6.toml

30 Chapter 4. Running OmpSs-2@FPGA Programs

https://pm.bsc.es/gitlab/ompss-at-fpga/rtl/meep-ompss-fpga-cluster
https://github.com/bsc-pm-ompss-at-fpga/ovni
https://tools.bsc.es/paraver

OmpSs-2@FPGA User Guide, Release 3.2.0

Then, set the instrument entry to ovni:

Then run the application as usual. See Running OmpSs-2@FPGA Programs for more details.

Note: Using an instrumentation-enabled bitstream without enabling instrumentation at the runtime level will result
in the application hanging.

After the program finishes, an ovni directory containing ovni traces should be created.

4.4.3 Processing traces

Ovni traces need to be converted to paraver traces to be visualized using paraver. Paraver traces need to be generated
from ovni traces for visualization. This is done using ovniemu tool:

ovniemu -x myapp.xtasks.config ovni/

In this example, myapp . xtasks.configis passed to ovniemu (using —x flag) to the tool is able to read acceler-
ator names for properly displaying them.

The output from the emulation process should look like this:

ovniemu: INFO: loaded 16 streams

ovniemu: INFO: sorting looms by name

ovniemu: INFO: loaded 1 looms, 1 processes, 16 threads and 8 cpus
ovniemu: INFO: generated with libovni version 1.10.0 commit unknown
ovniemu: INFO: the following 3 models are enabled:

ovniemu: INFO: nanos6 1.1.0 '6' (67 events)

ovniemu: INFO: ovni 1.1.0 'O' (18 events)

ovniemu: INFO: xtasks 1.0.0 'X' (1 events)

ovniemu: INFO: emulation starts

ovniemu: INFO: loom.fpganl0.770230 burst stats: median/avg/max = 98/102/361 ns

ovniemu: INFO: 100.0% done at avg 1240 kev/s

ovniemu: INFO: processed 1446408 input events in 1.17 s
ovniemu: INFO: writing traces to disk, please wait
ovniemu: INFO: emulation finished ok

In the ovni/ directory, two paraver traces should have been created as well as some paraver config files:

cfg/ Paraver config files
cpu.pcf CPU paraver trace files
cpu.prv

cpu.row

loom. fpganl0.770230/ Ovni trace directory
thread.pcft Thread trace files

thread.prv
thread.row

FPGA events are emitted to the thread trace. See also Paraver web page for further info on the visualization tool
and download links.

4.4. Ovni FPGA instrumentation 31

https://tools.bsc.es/paraver

OmpSs-2@FPGA User Guide, Release 3.2.0

32 Chapter 4. Running OmpSs-2@FPGA Programs

CHAPTER
FIVE

GENERATE BOOT FILES FOR XILINX SOC BOARDS

To generate the required files to boot the SoC boards (Zynq and Zynq Ultrascale+ families), Xilinx offers the Petal.inux
set of tools. Additionally, OmpSs @FPGA toolchain supports the automatic generation of boot files using these tools.

The following sections describe how to generate the boot files both manually and automatically.

5.1 Prerequisites

e PetalLinux installer (2021.2 or newer)
 Xilinx support archive (XSA) file from a synthesized Vivado project
* Board Support Package (BSP) file for the target board

5.1.1 PetaLinux installation

PetaLinux is installed running its auto-installer package:

./petalinux-v2023.2-10121855-installer.run --dir <installation directory>

After installation, you should source the Petalinux environment file. Usually, this needs to be done every time you
want to run from a new terminal.

Caution: Sourcing PetaLinux settings file may change the ARM cross-compilers.

’source <petalinux install dir>/settings.sh

5.2 Petalinux project setup

The following steps should be executed once. After that, you will be able to generate boot files for the target board
just using the ait feature or executing the steps in any of the following sections.

5.2.1 Unpack the bsp

Unpack the bsp to create the PetaLinux project:

33

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/embedded-software/petalinux-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html

OmpSs-2@FPGA User Guide, Release 3.2.0

petalinux—-create -t project -s <path to board bsp> —-n <project name>

5.2.2 Configure PetalLinux

Run Petalinux configuration and change the root filesystem type to ext 4:

petalinux-config

Image Packaging Configuration —
Root filesystem type —
EXT4 (SD/eMMC/SATA/USB)

You might also want to disable automatic copy to tftpboot to avoid a warning message at every build:

Image Packaging Configuration —
Copy final images to tftpboot

Note: Some boards may fail to build the First Stage Boot Loader (FSBL) due to its size.

In order to shrink the FSBL provide the following flags to the compiler (this will disable support for NAND and QSPI
boot modes):

FSBL Configuration —
FSBL compiler flags —
—-DFSBL_NAND_EXCLUDE, -DFSBL_QSPI_EXCLUDE

5.2.3 Configure linux kernel

To enter the kernel configuration utility, run:

petalinux-config -c kernel

Note: You may want to increase the CMA size. It is used by Nanos6 as memory for the FPGA device copies. Its size
can be set in:

Device drivers —
Generic Driver Options —
DMA Contiguous Memory Allocator

5.3 Generate boot files manually

Once PetaLinux project is setup, you can update it to contain a custom bitstream with your hardware. These steps can
be repeated several times without executing again the steps in the PetaLinux project setup section.

First, you need to import the Xilinx support archive file (xsa) in the PetaLinux project. This is done by executing the
following command in the root directory of the Petalinux project build.

34 Chapter 5. Generate boot files for Xilinx SoC boards

OmpSs-2@FPGA User Guide, Release 3.2.0

petalinux-config —--silent-config --get-hw-description <path to project xsa file>

5.3.1 Add OmpSs@FPGA node to the device tree

The OmpSs @FPGA node must be added to the device-tree before compiling it.

Copy the file pl_ompss_at_fpga.dtsi generated by AIT to project-spec/meta-user/
recipes-bsp/device-tree/files/.

Edit files project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi and
project-spec/meta-user/recipes-bsp/device-tree/device-tree.bbappend and add the fol-
lowing lines:

echo '/include/ "pl_ompss_at_fpga.dtsi"' > project-spec/meta-user/recipes-bsp/device—
—tree/files/system-user.dtsi
echo '"SRC_URI:append = " file://pl_ompss_at_fpga.dtsi"' > project-spec/meta-user/

—recipes-bsp/device-tree/device-tree.bbappend

5.3.2 Build the Linux system

When the project is correctly updated, you can build it with the following command:

petalinux-build

5.3.3 Create BOOT.BIN file

Finally, generate the boot files by running the following command:

petalinux-package —--force —-boot —--fsbl images/linux/zyng*_fsbl.elf --fpga <path to
—bitstream file> —-u-boot images/linux/u-boot.elf

5.4 Use AIT to generate boot files

The Accelerator Integration Tool (AIT) can automatically and transparently perform the steps described in Generate
boot files manually. To do so, you must:

* Add the option ——to_step=boot on the AIT call to enable the boot step

* Set the environment variable PETALINUX_BUILD with the path to the pre-configured Petalinux build project
of the target board

Once the boot files have been correctly generated, AIT will copy them into the project directory at <AIT project
path>/boot.

5.5 Copy the files to the SD boot partition

Finally, mount the boot partition of the board SD into your system and copy the required files (device name and paths
might not be the same):

5.4. Use AIT to generate boot files 35

OmpSs-2@FPGA User Guide, Release 3.2.0

udisksctl mount —--block-device /dev/mmcblkOpl

cp <path to petalinux project>/images/linux/BOOT.BIN /media/<user>/boot/
cp <path to petalinux project>/images/linux/image.ub /media/<user>/boot/
cp <path to petalinux project>/images/linux/boot.scr /media/<user>/boot/
udisksctl unmount —--block-device /dev/mmcblkOpl

36 Chapter 5. Generate boot files for Xilinx SoC boards

CHAPTER
SIX

CLUSTER INSTALLATIONS

6.1 lkergune cluster installation

The OmpSs-2@FPGA releases are automatically installed in the Ikergune cluster. They are available through a module
file for each target architecture. This document describes how to load and use the modules to compile an example
application. Once the modules are loaded, the workflow in the Ikergune cluster should be the same as in the Docker
images.

6.1.1 General remarks

 All software is installed in a version folder under the /apps/bsc/ARCH/ompss—2/ directory.
* During the updates, the installation will not be available for the users’ usage.

¢ After the installation, an informative email will be sent.

6.1.2 Module structure

The ompss-2 modules are:
* ompss—2/x86_64/«[release version]

This will automatically load the default Vivado version, although an arbitrary version can be loaded before ompss:

’module load vivado/2023.2 ompss—2/x86_64/git

To list all available modules in the system run:

’module avail

Other modules may be required to generate the boot files for some boards, for example:

’module load petalinux

6.1.3 Build applications

To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

37

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases

OmpSs-2@FPGA User Guide, Release 3.2.0

6.1.4 Running applications

Log into a worker node (interactive jobs)

Ikergune cluster uses SLURM in order to manage access to computation resources. Therefore, to log into a worker
node, an allocation in one of the partitions have to be made.

There are 2 partitions in the cluster: * ikergune—-eth: arm32 zynq7000 (7020) nodes * zU102: Xilinx zcul02

board

In order to make an allocation, you must run salloc:

salloc -p [partition]

For instance:

salloc -p ikergune-eth

Then get the node that has been allocated for you:

squeue

The output should look similar to this:

NAME USER ST
bash afilguer R

JOBID PARTITION
8547 ikergune-

TIME
16:57

NODES NODELIST (REASON)
1 Node-3

Then, you can log into your node:

ssh ethNode-3

Load ompss kernel module

The ompss-fpga kernel module has to be loaded before any application using fpga accelerators can be run.

Kernel module binaries are provided in

/apps/bsc/[arch] /ompss/[release] /kernel-module/ompss_fpga.ko

Where arch is one of:
* arm32

* arm6é

release is one of the OmpSs @FPGA releases currently installed.

For instance, to load the 32bit kernel module for the git release, run:

sudo insmod /apps/bsc/arm32/ompss/git/kernel-module/ompss_fpga.ko

You can also run module avail ompss for alist of the currently installed releases.

Loading bitstreams

The fpga bitstream also needs to be loaded before the application can run. The 1oad_bitstream utility is provided

in order to simplify the FPGA configuration.

38

Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

’load_bitstream bitstream.bin

Note that the .bin file is being loaded. Trying to load the .bit file will result in an error.

6.2 Xaloc cluster installation

The OmpSs-2@FPGA releases are automatically installed in the Xaloc cluster. They are available through a module
file for each target architecture. This document describes how to load and use the modules to compile an example
application. Once the modules are loaded, the workflow in the Xaloc cluster should be the same as in the Docker
images.

6.2.1 General remarks

* The OmpSs@FPGA toolchain is installed in a version folder under the /opt /bsc/ directory.

e Third-party libraries required to run some programs are installed in the corresponding folder under the /opt /
1lib/ directory.

 The rest of the software (Xilinx toolchain, slurm, modules, etc.) is installed under the /tools/ directory.

6.2.2 Node specifications

¢ CPU: Dual Intel Xeon X5680

— https://ark.intel.com/content/www/us/en/ark/products/47916/intel- xeon-processor-x5680- 1 2m-cache-3-33-ghz-6-40-gts-in
html

* Main memory: 72GB DDR3-1333
* FPGA: Xilinx Versal VCK5000

- https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/vck5000.html

6.2.3 Logging into xaloc

Xaloc is accessible from HCA ssh.hca.bsc.es Alternatively, it can be accessed through the 8410 port in HCA
and ssh connection will be redirected to the actual host:

ssh -p 8410 ssh.hca.bsc.es

Also, this can be automated by adding a xaloc host into ssh config:

Host xaloc
HostName ssh.hca.bsc.es
Port 8410

6.2.4 Module structure

The ompss-2 modules are:
e ompss—-2/x86_64/«[release version]

This will automatically load the default Vivado version, although an arbitrary version can be loaded before ompss:

6.2. Xaloc cluster installation 39

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases
https://ark.intel.com/content/www/us/en/ark/products/47916/intel-xeon-processor-x5680-12m-cache-3-33-ghz-6-40-gts-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/47916/intel-xeon-processor-x5680-12m-cache-3-33-ghz-6-40-gts-intel-qpi.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/vck5000.html

OmpSs-2@FPGA User Guide, Release 3.2.0

’module load vivado/2023.2 ompss-2/x86_fpga/git

To list all available modules in the system run:

’module avail

6.2.5 Build applications

To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

6.2.6 Running applications

Warning: Although the Versal board is installed and can be allocated via slurm there is no toolchain support yet.

Get access to an installed fpga
Xaloc cluster uses SLURM in order to manage access to computation resources. Therefore, to be able to use the
resources of an FPGA, an allocation in one of the partitions has to be made.
There is 1 partition in the cluster:
* fpga: a Versal VCKS5000 board

The easiest way to allocate an FPGA is to run bash through srun with the ——gres option:

srun —-—-gres=fpga:BOARD:N —--pty bash

Where BOARD is the FPGA to allocate, in this case versal, and N the number of FPGAs to allocate, that is 1.

For instance, the command:

’srun —-—gres=fpga:versal:1l —--pty bash

Will allocate the FPGA and run an interactive bash with the required tools and file permissions already set by slurm.
To get information about the active slurm jobs, run:

squeue

The output should look similar to this:

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
1312 fpga bash afilguer R 17:14 1 xaloc

6.3 Quar cluster installation

La Quar is a small town and municipality located in the comarca of Bergueda, in Catalonia.

It’s also an intel machine containing two Xilinx Alveo U200 accelerator cards.

40 Chapter 6. Cluster Installations

https://en.wikipedia.org/wiki/La_Quar

OmpSs-2@FPGA User Guide, Release 3.2.0

The OmpSs-2@FPGA releases are automatically installed in the Quar cluster. They are available through a module
file for each target architecture. This document describes how to load and use the modules to compile an example
application. Once the modules are loaded, the workflow in the Quar cluster should be the same as in the Docker
images.

6.3.1 General remarks

¢ The OmpSs @FPGA toolchain is installed in a version folder under the /opt /bsc/ directory.

* Third-party libraries required to run some programs are installed in the corresponding folder under the /opt /
1ib/ directory.

* The rest of the software (Xilinx toolchain, slurm, modules, etc.) is installed under the /tools/ directory.

6.3.2 Node specifications

¢ CPU: Intel Xeon Silver 4208 CPU

— https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor- 1 I m-cache-2-10-ghz.
html.

¢ Main memory: 64GB DDR4-3200
* FPGA: Xilinx Alveo U200

— https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

6.3.3 Logging into quar

Quar is accessible from HCA ssh.hca.bsc.es Alternatively, it can be accessed through the 8419 port in HCA
and ssh connection will be redirected to the actual host:

ssh —p 8419 ssh.hca.bsc.es

Also, this can be automated by adding a quar host into ssh config:

Host quar
HostName ssh.hca.bsc.es
Port 8419

6.3.4 Module structure

The ompss-2 modules are:
* ompss—2/x86_64/«[release version]

This will automatically load the default Vivado version, although an arbitrary version can be loaded before ompss:

’module load vivado/2023.2 ompss—2/x86_64/git

To list all available modules in the system run:

’module avail ‘

6.3. Quar cluster installation 41

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases
https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor-11m-cache-2-10-ghz.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

OmpSs-2@FPGA User Guide, Release 3.2.0

6.3.5 Build applications
To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

6.3.6 Running applications

Get access to an installed fpga

Quar cluster uses SLURM in order to manage access to computation resources. Therefore, to be able to use the
resources of an FPGA, an allocation in one of the partitions has to be made.

There is 1 partition in the cluster:

e fpga: two Alveo U200 boards

The easiest way to allocate an FPGA is to run bash through srun with the ——gres option:

srun ——-gres=fpga:BOARD:N —--pty bash

Where BOARD is the FPGA to allocate, in this case alveo_u200, and N the number of FPGAs to allocate, either 1
or2.

For instance, the command:

’srun ——gres=fpga:alveo_u200:2 —-pty bash

Will allocate both FPGAs and run an interactive bash with the required tools and file permissions already set by slurm.
To get information about the active slurm jobs, run:

squeue

The output should look similar to this:

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
1312 fpga bash afilguer R 17:14 1 quar

Loading bistreams

The FPGA bitstream needs to be loaded before the application can run. The 1oad_bitstream utility is provided
in order to simplify the FPGA configuration.

load_bitstream bitstream.bit [index]

The utility receives a second optional parameter to indicate which of the allocated FPGAs to program, the default
behavior is to program all the allocated FPGAs with the bitstream.

To know which FPGAs indices have been allocated, run 1oad_bitstream with the help (—h) option. The output
should be similar to this:

Usage load_bitstream bitstream.bit [index]
Available devices:

index: Jjtag pcie usb
0: 21290594G00LA 0000:03:00.0 001:002
1: 21290594GO0EA 0000:65:00.0 001:003

42 Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

Set up qdma queues

Note: This step is performed by 1oad_bitstream script, which creates a single bidirectional memory mapped
queue. This is only needed if other configuration is needed.

For DMA transfers to be performed between system main memory and the FPGA memory, gdma queues has to be set
up by the user prior to any execution.

In this case dmact1 tool is used. For instance: In order to create and start a memory mapped qdma queue with index
1 run:

dmactl gdmab3000 g add idx 1 mode mm dir bi
dmactl gdmab3000 g start idx 1 mode mm dir bi

OmpSs runtime system expects an mm queue at index 1, which can be created with the commands listed above.

In the same fashion, these queues can also be removed:

dmactl gdmab3000 g stop idx 1 mode mm dir bi
dmactl gdmab3000 g del idx 1 mode mm dir bi

For more information, see

dmactl —--help

Get current bitstream info

In order to get information about the bitstream currently loaded into the FPGA, the tool read_bitinfo is installed
in the system.

read_bitinfo

Note that an active slurm reservation is needed in order to query the FPGA.

This call should return something similar to the sample output for a cholesky decomposition application:

Bitinfo of FPGA 0000:03:00.0:

Bitinfo version: 13
Bitstream user-id: 0x603186FD
AIT version: 7.7.1
Wrapper version 13

Number of acc: 9

Board base frequency (MHz) 156.250000
Interleaving stride 32768

Features:
[] Instrumentation
Hardware counter

POM lock
POM spawn queues

[]

[x] Performance interconnect

[] Simplified interconnection
[] POM AXI-Lite

[x] POM task creation

[x] POM dependencies

[]

[x]

X

(continues on next page)

6.3. Quar cluster installation 43

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

[] Power monitor (CMS)
[] Thermal monitor (sysmon)
[] OMPIF

Managed rstn addr O0xA000

Cmd In addr 0x6000 len 64

Cmd Out addr 0x8000 len 64

Spawn In addr 0x2000 len 1024

Spawn Out addr 0x4000 len 1024
Hardware counter not enabled

POM AXI-Lite not enabled

Power monitor (CMS) not enabled
Thermal monitor (sysmon) not enabled

xtasks accelerator config:

type count freqg(KHz) description
5862896218 1 300000 cholesky_blocked
5459683074 1 300000 omp_trsm
5459653839 1 300000 omp_syrk
5459186490 6 300000 omp_gemm

ait command line:

ait —--name=cholesky —--board=alveo_u200 -c=300 --max_deps_per_task=3 --max_args_per_
—~task=3 --max_copies_per_task=3 —--picos_tm_size=256 —--picos_dm_size=645 —--picos_vm_
—~size=775 —--memory_interleaving_stride=32K --simplify_interconnection —--interconnect_
—priorities —-—-interconnect_opt=performance --interconnect_regslice=all --
—floorplanning_constr=acc —--slr_slices=static --placement_file=u200_placement_6x256.
—Jjson —--disable_creator_ports —--wrapper_version 13

Hardware runtime VLNV:
bsc:ompss:picos_ompss_manager:7.3

Remote debugging

Although it is possible to interact with Vivado’s Hardware Manager through ssh-based X forwarding, Vivado’s GUI
might not be very responsive over remote connections. To avoid this limitation, one might connect a local Hardware
Manager instance to targets hosted on Quar, completely avoiding X forwarding, as follows.

1. On Quar, when allocating an FPGA with slurm, a Vivado HW server is automatically launched for each FPGA:
* FPGA 0 uses port 3120
* FPGA 1 uses port 3121

2. On the local machine, assuming that Quar’s HW Server runs on port 3120, let all connections to port 3120 be
forwarded to quar by doing ssh -L 3120:quar:3120 [USER]@ssh.hca.bsc.es -p 8410.

3. Finally, from the local machine, connect to Quar’s hardware server:
* Open Vivado’s Hardware Manager.
* Launch the “Open target” wizard.

* Establish a connection to the local HW server, which will be just a bridge to the remote instance.

44 Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

Enabling OpenCL / XRT mode

FPGA in quar can be used in OpenCL / XRT mode. Currently, XRT 2022.2 is installed. To enable XRT the shell has
to be configured into the FPGA and the PCle devices re-enumerated after configuration has finished.

This is done by running

load_xrt_shell

Note that this has to be done while a slurm job is allocated. After this process has completed, output from 1spci
-vd 10ee: should look similar to this:

b3:00.0 Processing accelerators: Xilinx Corporation Device 5000
Subsystem: Xilinx Corporation Device 000e
Flags: bus master, fast devsel, latency 0, NUMA node 0
Memory at 383f£f0000000 (64-bit, prefetchable) [size=32M]
Memory at 383ff4000000 (64-bit, prefetchable) [size=256K]
Capabilities: <access denied>
Kernel driver in use: xclmgmt
Kernel modules: xclmgmt

b3:00.1 Processing accelerators: Xilinx Corporation Device 5001
Subsystem: Xilinx Corporation Device 000e
Flags: bus master, fast devsel, latency 0, IRQ 105, NUMA node 0
Memory at 383f£2000000 (64-bit, prefetchable) [size=32M]
Memory at 383f£f4040000 (64-bit, prefetchable) [size=256K]
Memory at 383fe0000000 (64-bit, prefetchable) [size=256M]
Capabilities: <access denied>
Kernel driver in use: xocl
Kernel modules: xocl

Also XRT devices should show up as ready when running xbutil examine. Note that the xrt/2022.2 has to be
loaded.

module load xrt/2022.2
xbutil examine

And it should show this output:

System Configuration

0S Name : Linux
Release : 5.4.0-97-generic
Version : #110-Ubuntu SMP Thu Jan 13 18:22:13 UTC 2022
Machine : x86_64
CPU Cores : 16
Memory : 63812 MB
Distribution : Ubuntu 18.04.2 LTS
GLIBC : 2.31
Model : PowerEdge T640
XRT
Version : 2.14.354
Branch . 2022.2
Hash : 43926231£7183688add2dccfd391b36alf000bea
Hash Date : 2022-10-08 09:49:58
XOCL : 2.14.354, 43926231£f7183688add2dccfd391b36alf000bea
XCLMGMT : 2.14.354, 43926231£7183688add2dccfd391b36alf000bea

(continues on next page)

6.3. Quar cluster installation 45

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

Devices present

BDF : Shell Platform UUID o
- Device ID Device Readyx*
[0000:03:00.1] : xilinx_u200_gen3x16_xdma_base_2 0B095B81-FA2B-E6BD-4524—

< 72B1C1474F18 wuser (inst=128) Yes

« Devices that are not ready will have reduced functionality when using XRT tools

6.4 crdbmaster cluster installation

The OmpSs-2@FPGA releases are automatically installed in the crdbmaster cluster. They are available through a
module file for each target architecture. This document describes how to load and use the modules to compile an
example application. Once the modules are loaded, the workflow in the crdbmaster cluster should be the same as in
the Docker images.

6.4.1 General remarks

* The OmpSs@FPGA toolchain is installed in a version folder under the /opt /bsc/ directory.

* Third-party libraries required to run some programs are installed in the corresponding folder under the /opt /
1lib/ directory.

* The rest of the software (Xilinx toolchain, slurm, modules, etc.) is installed under the /tools/ directory.

6.4.2 Node specifications

e CPU: Intel Xeon E3-1220 CPU

— https://www.intel.com/content/www/us/en/products/sku/52269/intel- xeon-processor-e31220-8m-cache-3-10-ghz/
specifications.html

* Main memory: 32GB DDR3-1600
* FPGAs:
— Xilinx Kria KV260
+ https://www.amd.com/en/products/system-on-modules/kria/k26/kv260-vision-starter-kit.html
— Xilinx Zynq Ultrascale+ ZCU102
= https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/ek-ul-zcul102-g.html
- Xilinx Zynq 7000 ZC702

* https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/ek-z7-zc702-g.html

6.4.3 System overview

Current setup consists of an x86 login node and several SoC boards directly connected to it. Serial lines and jtag are
connected to the login node, allowing node management as well as debug and programming.

46 Chapter 6. Cluster Installations

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases
https://www.intel.com/content/www/us/en/products/sku/52269/intel-xeon-processor-e31220-8m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/52269/intel-xeon-processor-e31220-8m-cache-3-10-ghz/specifications.html
https://www.amd.com/en/products/system-on-modules/kria/k26/kv260-vision-starter-kit.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/ek-u1-zcu102-g.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/ek-z7-zc702-g.html

OmpSs-2@FPGA User Guide, Release 3.2.0

6.4.4 Logging into the system

Crdbmaster login node is accessible via ssh at crbmaster.bsc.es

6.4.5 Module structure

The ompss-2 modules are:
e ompss—-2/armé64/«[release version]

This will automatically load the default Vivado version, although an arbitrary version can be loaded before ompss:

’module load vivado/2023.2 ompss—-2/arm64/git

To list all available modules in the system run:

’module avail

6.4.6 Build applications
To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

6.4.7 Running applications

Get access to an installed fpga
crdbmaster cluster uses SLURM in order to manage access to computation resources. Therefore, to be able to use the
resources of an FPGA, an allocation in one of the partitions has to be made.
There are 2 partitions in the cluster:
e arm64: KV260 and ZCU102 boards
* arm32: ZC702 board

In order to make an allocation, you must run srun:

’srun -p [partition]

For instance:

’srun -p arm32 —--pty bash

Or allocate a specific board with:

’srun -p arm64 --nodelist=zcul02 —--pty bash

These commands will allocate an FPGA and run an interactive bash with the required tools and file permissions already
set by slurm. To get information about the active slurm jobs, run:

squeue

The output should look similar to this:

6.4. crdbmaster cluster installation 47

OmpSs-2@FPGA User Guide, Release 3.2.0

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
1312 arm32 bash afilguer R 17:14 1 zyng702

Loading bistreams

The FPGA bitstream needs to be loaded before the application can run. Xilinx provides the fpgaut il utility in order
to simplify bitstream loading.

fpgautil -b bitstream.bin

Get current bitstream info

In order to get information about the bitstream currently loaded into the FPGA, the tool read_bitinfo is installed
in the system.

read_bitinfo

Note that an active slurm reservation is needed in order to query the FPGA.

This call should return something similar to the sample output for a matrix multiplication application:

Bitinfo version: 13
Bitstream user—-id: 0x9D8E280
AIT version: 7.7.2
Wrapper version 13

Number of acc: 3

Board base frequency (MHz) 125.000000
Interleaving not enabled

Features:

[] Instrumentation

Hardware counter
Performance interconnect
Simplified interconnection
POM AXI-Lite

POM task creation

POM dependencies

POM lock

POM spawn queues

Power monitor (CMS)
Thermal monitor (sysmon)
OMPIF

— e e
wooX

Managed rstn addr 0x8000A000

Cmd In addr 0x80006000 len 256

Cmd Out addr 0x80008000 len 256
Spawn In addr 0x80002000 len 1024
Spawn Out addr 0x80004000 len 1024
Hardware counter not enabled

POM AXI-Lite not enabled

Power monitor (CMS) not enabled
Thermal monitor (sysmon) not enabled

xtasks accelerator config:

(continues on next page)

48 Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

type count freq(KHz) description
5839957875 1 100000 matmulFPGA
7602000973 2 100000 matmulBlock

ait command line:
ait --name=matmul --board=zyng702 -c=100 --interconnect_opt=performance --
—interconnect_regslice=all --wrapper_version 13

Hardware runtime VLNV:
bsc:ompss:picos_ompss_manager:7.3

6.5 Llebeig cluster installation

The OmpSs-2@FPGA releases are automatically installed in the Llebeig cluster. They are available through a module
file for each target architecture. This document describes how to load and use the modules to compile an example
application. Once the modules are loaded, the workflow in the Llebeig cluster should be the same as in the Docker
images.

6.5.1 General remarks

* The OmpSs@FPGA toolchain is installed in a version folder under the /opt /bsc/ directory.

* Third-party libraries required to run some programs are installed in the corresponding folder under the /opt /
1lib/ directory.

¢ The rest of the software (Xilinx toolchain, modules, etc.) is installed under the /tools/ directory.

6.5.2 Logging into llebeig

Llebeig is accessible from HCA ssh.hca.bsc.es Alternatively, it can be accessed through the 8412 port in HCA
and ssh connection will be redirected to the actual host:

ssh —-p 8412 ssh.hca.bsc.es

Also, this can be automated by adding a 11ebeig host into ssh config:

Host llebeig
HostName ssh.hca.bsc.es
Port 8412

6.5.3 Module structure

The ompss-2 modules are:
* ompss-2/x86_64/*[release version]x*

This will automatically load the default Vivado version, although an arbitrary version can be loaded before ompss:

module load vivado/2023.2 ompss-2/x86_64/git

To list all available modules in the system run:

6.5. Llebeig cluster installation 49

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases

OmpSs-2@FPGA User Guide, Release 3.2.0

module avail

6.5.4 Build applications
To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

6.6 Meep cluster installation

The Meep cluster, also known as makinote, is an FPGA cluster composed of 12 nodes with 8 FPGAs each for a total
of 96 FPGA:s. It also contains 4 nodes without FPGAs used for compilation and synthesis.

The OmpSs-2@FPGA releases are automatically installed in the Meep cluster. They are available through a module
file for each target architecture.

6.6.1 General remarks

* OmpSs@FPGA tools are installed in /home/genu/pmtest/opt /bsc/ directory.
* OmpSs modules need to manually enabled.

¢ This cluster uses BSC HPC accounts. Users look like bscOxxxxx.

* During the updates, the installation will not be available for the users’ usage.
 Usually, the installation takes about 30 minutes.

¢ After the installation, an informative email will be sent.

6.6.2 Node specifications

Full node specifications are available at the support knowledge center: https://www.bsc.es/supportkc/docs/MEEP/
overview

¢ CPU: Intel Xeon Gold 6330 with 28 cores @ 2.0GHz

— https://ark.intel.com/content/www/us/en/ark/products/212458/intel-xeon- gold-6330-processor-42m-cache-2-00- ghz.

html
* Main memory: 256 GB (16 RDIMM x 16GB DDR4 @ 3200 MHz)
* 8 Xilinx Alveo UC55c FPGAs
There are 12 FPGA node, 4 synthesis nodes and a login node. Synthesis and login nodes to not have FPGAs.

6.6.3 Logging into Meep

Login node is accessible from the BSC internal network. To access from an external network, the VPN must be used.
The login node is accessible from fpgaloginl.bsc.es

ssh bscxxxxx@fpgaloginl.bsc.es

50 Chapter 6. Cluster Installations

https://github.com/bsc-pm-ompss-at-fpga/ompss-2-at-fpga-releases
https://www.bsc.es/supportkc/docs/MEEP/overview
https://www.bsc.es/supportkc/docs/MEEP/overview
https://ark.intel.com/content/www/us/en/ark/products/212458/intel-xeon-gold-6330-processor-42m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212458/intel-xeon-gold-6330-processor-42m-cache-2-00-ghz.html

OmpSs-2@FPGA User Guide, Release 3.2.0

6.6.4 Module structure

The default environment does not have the available modules for building OmpSs@FPGA applications. A suitable
environment can be set up:

source ~pmtest/tools/ompss_fpga_init.sh

This will enable OmpSs modules, also, reasonably recent versions of python, cmake or clang are enabled.

Note: The loaded python 3.11, while it’s needed by ait, will break gdb and maybe other system applications

The OmpSs-2 modules are:
* ompss—-2/x86_64/«[release version]

This will automatically load the default Vivado version, although an arbitrary version can be loaded before OmpSs:

’module load vivado/2023.2 ompss-2/x86_64/git

To list all available modules in the system run:

’module avail

6.6.5 Build applications

To generate an application binary and bitstream, you could refer to Compile OmpSs-2@FPGA programs as the steps
are general enough.

Note that the appropriate modules need to be loaded. See Module structure.

To allocate a job in the synthesis nodes, the gpp partition needs to be used. To enable remote x11 graphics, the ——x11
needs to be specified.

For instance, to start an interactive session with graphics:

’salloc -c 10 ——mem=64G -t 4:00:00 -p gpp —-—-x11

The job will be using 10 cores and 64GB of memory.

For a batch job with no graphics:

sbatch -c 10 —-—mem=64G -t 4:00:00 -p gpp build_script.sh

6.6.6 Running applications

This section describes how to allocate resources and set up the environment to run an OmpSs @FPGA application. To
execute the application itself, refer to Running OmpSs-2@ FPGA Programs.

Get access to an installed fpga

To run OmpSs @FPGA applications, a job needs to be allocated in the FPGA nodes. These nodes are the main partition.
Therefore, no partition needs to be specified.

For instance, an interactive job looks like this:

6.6. Meep cluster installation 51

OmpSs-2@FPGA User Guide, Release 3.2.0

salloc - ¢ 112 —-—mem=128G -t 4:00:00 —--constraint=dmagdma

This will allocate a full node in gdma mode, which is needed for running OmpSs @FPGA applications. The fill node
will be allocated and the 8 FPGAs are available to the user.

Information about the FPGAs is stored in /etc/motd file. This file specifies board serial number, USB port, PCle

slot, and the network ports used by each FPGA.

For instance:

o
e +
| - + +——— + - + - + - + L
e + +——— + - + |
| | swp26 | | swp25 | | swp24 | | swp23 | | swp22 | o
[N [swp2l | | swp20 | |swpl9 | |
| - + - + - + +——— + - + L
- + e + fo— + |
+ _______ N _ N~ N~ N~ N
- A O N ———— +

\ | | \ \ o
. | | |
- | ———————— - | ——————— e | ——————— o | ———————— - | ———————— +-
Ly ———— | - +-————— | - +-———— | —————— +
| v | v v v | v |
—y v v v |
| +-——— + | +-—————- + +-—————- + - + | +-———- + |
o e + - + - + |
| | | | | | | | | | | | | (.
- | | | I \ \ \
| |QSFPO | | |QSFPO | [QSFPO | [QSFPO | | |QSFPO | I
[|QSEFPO | |QSFPO | |QSFPO | |
| | | | | | | | | | | | | I
- | | | \ \
| - + | +————— + - + - + | - + |
[+—-———— + +-————— + +-———— + |
| | | I
— \
| +-—— + | +-————— + - + - + | +-—— + |u
o fm————— + +——— + - + |
| | | | | | | | | | | | | (.
—_— | | | \ \ \
| |QSFP1 | <————-> |QSFP1 | |QSFP1 | <———-=> |QSFP1 | | |QSFP1 | <————
<> |QSFP1 | |QSFP1 | <-———> |QSFP1 | |
| | | | | | | | | | | | | I
- | | | | \ \
| +——— + | - + - + - + | - + |
— +-————— + +-———— + +—-————- + |
| onicl80s0f0 | onicl79s0f0 onic204s0f0 onic205s0£f0 | onic26s0f0 I
— onic25s0f0 onic51s0£f0 onic52s0f0 |
| | | I
— \
| +—+ | +—+ +—+ +—+ | +—+ |
— +—+ +—+ +—+ |
| . | [[(. | [(.
— (. [[\
| +—+ | +—+ +—+ +—+ | +—+ |u
. +—+ +—+ +—+ |

(continues on next page)

52 Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

| USB-UART- | USB-UART- | USB-UART- | USB-UART- | USB-UART- |
— USB-UART- | USB-UART- | USB-UART- |

| XFLIND323BSU | XFL1Y1BX0JYT | XFL1E3102VRH | XFL12GUQOUBJA | XFL1UZW5UOMR

— | XFL1G5IYME1R | XFL12IUWGVDB | XFL1D2QP0O0YZ |

fom e fom o fom fom +-
I e e R Fom +

e fomm o fomm fomm o +——
e e fom - fom +

| FPGA Card | Chassis | FPGA Serial | PCIe Bus | USBPort | ttyUSBx I
—QSFPO | QSFP1 | ODMA onic | onic IP |

fom Fo—m - e e L fomm Fo—— - o +-—
—————— Fom e fom o —— +

| fpgan08f01 | 3 | XFL1D2QPOOYZ | 34:00.0 | 1 | USB-UART-XFL1D2QP00YZ |
—Switch | fpgan08£f02 | onic52s0£f0 | 10.0.1.1/24 |

fom Fo— e fom Fo— o +——
G fom e R fom +

| fpgan08f02 | 4 | XFL12IUWGVDB | 33:00.0 | 2 | USB-UART-XFL12IUWGVDB |,
—Switch | fpgan08f01 onich1ls0f0 | 10.0.2.1/24 |

e fomm fom fom e fomm B e +——
p—————— fom R e L Fom +

| fpgan08£f03 | 5 | XFL1G5IYMEIR | 19:00.0 | 3 | USB-UART-XFL1GSIYME1R |,
—Switch | fpgan08f04 | onic25s0£f0 | 10.0.3.1/24 |

fom o ——— e fmm———— o ——— e +——
m————— fom e fom o —— +

| fpgan08f04 | 6 | XFL1UZWSUOMR | 1a:00.0 | 4 | USB-UART-XFL1UZWS5UOMR |
—Switch | fpgan08f03 | onic26s0£f0 | 10.0.4.1/24 |

fom e o e fom o —— e +——
e Fom o o +

| fpgan08f05 | 7 | XFL12GUOUBJA | ¢d:00.0 | 5 | USB-UART-XFL12GUOUBJA |,
—Switch | fpgan08f06 | onic205s0f0 | 10.0.5.1/24 |

Fom fom Fom fom fom o —
= fom tomm Fom +

| fpgan08f06 | 8 | XFL1E3102VRH | cc:00.0 | 6 | USB-UART-XFL1E3102VRH |
—Switch | fpgan08f05 | onic204s0f0 | 10.0.6.1/24 |

fom o e fom o ——— e +——
m————— Fom e fom o —— +

| fpgan08f07 | 9 | XFL1Y1BXO0JYT | b3:00.0 | 7 | USB-UART-XFL1Y1BXOJYT |
—Switch | fpgan08f08 | onicl79s0f0 | 10.0.7.1/24 |

fom e o —— e fom o —— e +——
p—————— e et o o +

| fpgan08f08 | 10 | XFLIND323BSU | b4:00.0 | 8 | USB-UART-XFLIND323BSU |,
—Switch | fpgan08f07 | onicl80s0f0 | 10.0.8.1/24 |

Fom Fom o Fom Fom o +-—
G ————— Fom fom e —— +

Loading bistreams

The FPGA bitstream needs to be loaded before the application can run. The 1oad_bitstream utility is provided
in order to simplify the FPGA configuration.

load_bitstream bitstream.bit [index]

The utility receives a second parameter to indicate which of the FPGAs to program. More than one index can be
specified. In such case, all the specified FPGAs will be programmed using the given bitstream.

6.6. Meep cluster installation 53

OmpSs-2@FPGA User Guide, Release 3.2.0

To know which FPGAs indices have been allocated, run 1oad_bitstream with the help (-h) option. The output
should be similar to this:

Usage load_bitstream bitstream.bit [index]
Available devices:

index: jtag serial pcie

XFL1D2QP00YZ 34:00.
XFL12IUWGVDB 33:00.
XFL1G5IYMEIR 19:00.
XFL1UZW5UOMR 1a:00.
XFL12GUOUBJA cd:00.
XFL1E3102VRH cc:00.
XFL1Y1BX0JYT b3:00.
XFLIND323BSU b4:00.

~N o 0w N O
O O O O O o O o

Set up qdma queues

Note: This step is performed by 1oad_bitstream script, which creates a single bidirectional memory mapped
queue. This is only needed if other configuration is needed.

For DMA transfers to be performed between system main memory and the FPGA memory, gdma queues has to be set
up by the user prior to any execution.

In this case dma-ctl tool is used. For instance: In order to create and start a memory mapped qdma queue with
index 1 run:

dma-ctl gdmab3000 g add idx 1 mode mm dir bi
dma-ctl gdmab3000 g start idx 1 mode mm dir bi

OmpSs runtime system expects an mm queue at index 1, which can be created with the commands listed above.

In the same fashion, these queues can also be removed:

dma-ctl gdmab3000 g stop idx 1 mode mm dir bi
dma-ctl gdmab3000 g del idx 1 mode mm dir bi

For more information, see

dma-ctl —--help

Get current bitstream info

In order to get information about the bitstream currently loaded into the FPGA, the tool read_bitinfo is installed
in the system.

read_bitinfo

Note that an active slurm reservation is needed in order to query the FPGA.

This call should return something similar to the sample output for a OMPIF test application:

Bitinfo of FPGA 0000:cc:00.0:
Bitinfo version: 13
Bitstream user—-id: 0x479B8510

(continues on next page)

54 Chapter 6. Cluster Installations

OmpSs-2@FPGA User Guide, Release 3.2.0

(continued from previous page)

AIT version: 7.7.2
Wrapper version 13
Number of acc: 5

Board base frequency (MHz) 100.000000
Interleaving not enabled

Features:
[1] Instrumentation

[

Hardware counter

x] Performance interconnect
Simplified interconnection

x] POM AXI-Lite

x] POM task creation

1

[x]

[]

[x]

[x]

[] POM dependencies
[] POM lock
[x]

[]

[]

[x]

x] POM spawn queues
Power monitor (CMS)
Thermal monitor (sysmon)
x] OMPIF

Managed rstn addr 0x10000

Cmd In addr 0xC000 len 128

Cmd Out addr O0xE000 len 128

Spawn In addr 0x8000 len 1024

Spawn Out addr 0xA000 len 1024
Hardware counter not enabled

POM AXI-Lite addr 0x4000

Power monitor (CMS) not enabled
Thermal monitor (sysmon) not enabled

xtasks accelerator config:

type count freqg(KHz) description

8381065717 1 100000 send_receive_test
8454279320 1 100000 allgather_test_task
7899490654 1 100000 broadcast_test_task
4294967299 1 100000 ompif_message_sender
4294967300 1 100000 ompif_message_receiver

ait command line:
ait —--name=ompif_test --board=alveo_ub5c -c=100 --enable_pom_axilite --interconnect_
—opt=performance —--wrapper_version 13

Hardware runtime VLNV:
bsc:ompss:picos_ompss_manager:7.3

Running cluster applications

See Running OMPIF applications.

* genindex

6.6. Meep cluster installation 55

OmpSs-2@FPGA User Guide, Release 3.2.0

56 Chapter 6. Cluster Installations

A

AIT interconnect, 21
AIT options, 14,18
ait_options, 14

B

boot
xilinx, 31

compile
OmpSs—-2Q@FPGA, 11
crdbmaster, 46

D

develop
OmpSs—2@FPGA, 6

ikergune, 37
install

toolchain; OmpSs-2Q@FPGA, |
installation, 36

L

llebeiqg, 49
LLVM/Clang FPGA Phase options, 13

M

meep, 50

N

Nanos6 API,9
Nanos6 FPGA Architecture
configuration, 27

O

OmpSs—-2Q@FPGA
compile, 11
develop, 6
running, 25
Ovni FPGA instrumentation, 30

INDEX

F)

POM AXI lite,?29

Q

quar, 40

R

Run OMPIF applications, 28
running
OmpSs—-2@FPGA, 25

T

toolchain; OmpSs—-2@FPGA
install,

X

xaloc, 39
xilinx
boot, 31

57

	Install OmpSs-2@FPGA toolchain
	Prerequisites
	Git Large File Storage
	Vendor backends - Xilinx Vivado

	Stable release
	Individual git repositories
	Accelerator Integration Tool (AIT)
	Kernel module
	XDMA
	xTasks
	ovni
	Nanos6-fpga
	LLVM/Clang

	Develop OmpSs-2@FPGA programs
	Limitations
	Specific differences in clauses and directives in OmpSs-2@FPGA VS OmpSs-2
	Clauses of task directive
	num_instances
	affinity
	copy_in/out
	copy_deps

	Calls to Nanos6 API
	Nanos6 FPGA Architecture API

	Compile OmpSs-2@FPGA programs
	LLVM/Clang FPGA Phase options
	fompss-fpga-wrapper-code
	fompss-fpga-ait-flags
	fompss-fpga-memory-port-width
	fompss-fpga-check-limits-memory-port
	fompss-fpga-instrumentation

	AIT options
	AIT options
	Accelerator placement options
	Accelerator interconnect options

	Binaries
	Bitstream
	HW Instrumentation
	Shared memory port

	Boot Files

	Running OmpSs-2@FPGA Programs
	Nanos6 FPGA Architecture configuration
	Running OMPIF applications
	Install cluster scripts
	Application execution

	POM AXI-Lite interface memory map
	How to enable the AXI-Lite interface
	How to read the registers with QDMA

	Ovni FPGA instrumentation
	Prerequisites
	Running the application
	Processing traces

	Generate boot files for Xilinx SoC boards
	Prerequisites
	PetaLinux installation

	PetaLinux project setup
	Unpack the bsp
	Configure PetaLinux
	Configure linux kernel

	Generate boot files manually
	Add OmpSs@FPGA node to the device tree
	Build the Linux system
	Create BOOT.BIN file

	Use AIT to generate boot files
	Copy the files to the SD boot partition

	Cluster Installations
	Ikergune cluster installation
	General remarks
	Module structure
	Build applications
	Running applications

	Xaloc cluster installation
	General remarks
	Node specifications
	Logging into xaloc
	Module structure
	Build applications
	Running applications

	Quar cluster installation
	General remarks
	Node specifications
	Logging into quar
	Module structure
	Build applications
	Running applications

	crdbmaster cluster installation
	General remarks
	Node specifications
	System overview
	Logging into the system
	Module structure
	Build applications
	Running applications

	Llebeig cluster installation
	General remarks
	Logging into llebeig
	Module structure
	Build applications

	Meep cluster installation
	General remarks
	Node specifications
	Logging into Meep
	Module structure
	Build applications
	Running applications

	Index

