
LeWI: A Runtime Balancing Algorithm for Nested Parallelism

Marta Garcia, Julita Corbalan and Jesus Labarta
Barcelona Supercomputing Center BSC-CNS and

Universitat Politecnica de Catalunya UPC
Barcelona, Spain

marta.garcia, julita.corbalan, jesus.labarta@bsc.es

Abstract—We present LeWI: a novel load balancing al-
gorithm, that can balance applications with very different
patterns of imbalance. Our algorithm can balance fine grain
imbalances, non iterative applications and applications with
irregular imbalance. To achieve this LeWI reassigns the com-
putational resources of blocked processes to other processes
more loaded.

We have implemented LeWI within DLB a Dynamic Load
Balancing Library developed by us. DLB helps parallel pro-
gramming models to make the most of the computational power
available with the minimum effort. It solves the imbalance
among processes in applications with two levels of parallelism
using the malleability of the inner level.

The performance evaluation shows that LeWI, the novel
balancing algorithm we are presenting in this paper, together
with DLB is able to improve the performance of a different
range of unbalanced applications and when applied to well bal-
anced applications it does not introduce significant overhead.
Therefore we present a mechanism that can be used with any
hybrid application without needing a programmer to analyze
the application nor modify it.

Keywords-Dynamic, Load balancing, hybrid applications,
MPI, OpenMP, Unbalance, Parallelism.

I. INTRODUCTION

One typical source of inefficiency in parallel applications
is the imbalance between processes. The usual way of
attacking this problem is analyzing the application to find
the source of imbalance then modify the source code to
introduce some balancing code and test it. If the results are
not satisfactory the process starts again and iterates until the
performance achieved is satisfactory. This process must be
done by an expert in the parallel programming model used
by the application. The analyst may or may not know how
the application works. At the end it is a time consuming and
error prone process.

The solution we propose in this paper is a library (DLB)
that can be loaded dynamically when running an application
to improve its load balance at runtime. DLB can balance
applications with two levels of parallelism where the inner
level is malleable. We use the malleability of the inner level
to balance the outer level. The application does not need to
be modified nor analyzed.

The current version of the library has modules to balance
hybrid MPI+OpenMP applications but it is designed to be
easily extended for other programming models as long as the

inner level is malleable. From now on we will talk about the
MPI level and the OpenMP level to refer to the outer and
inner level of parallelism of the application respectively.

Within the DLB library we have implemented and evalu-
ated two different algorithms of load balancing: LeWI (Lend
When Idle), the novel algorithm we are presenting in this
paper, and DWB (Dynamic Weight Balancing), an algorithm
based in a previous work by Duran et al. [1].

The DWB is based on the load balance model presented
by Corbalan et al. [2] and the algorithm presented by Duran
et al. [1]. This model exploits the iterative behavior of some
applications and re-distributes the OpenMP threads based on
the computational load of each MPI process per iteration.

We detected that this algorithm had several limitations and
we tried to overcome them with LeWI. This novel algorithm
distributes resources equally among MPI processes in a node
while they are doing computation, and re-assigns resources
of MPI processes while they are blocked in communication
calls. Both algorithms will be further explained in the
following sections.

The performance evaluation showed that the LeWI algo-
rithm can improve the performance of different applications.
Moreover we showed that our algorithm can balance irregu-
lar or non iterative applications where DWB algorithm fails.

II. RELATED WORK AND MOTIVATION

The load balancing problem is as old as parallel pro-
gramming. Solutions for load balancing can be divided
in two main groups: The ones that are applied before
running the application and the ones that are applied at
runtime. In the first group the most used approach is domain
partitioning [3] [4]. The most representative and widely used
is Metis [5]. These solutions can only be applied to problems
with a certain data distribution (graph, mesh...) and must be
calculated before each execution for each different set of
input data.

In our work we are going to focus in solutions of the
second group that are applied at runtime and do not need to
modify the input datasets.

A typical approach to solve the issue of load balancing
in parallel applications at runtime is to combine two levels
of parallelism. Smith et al. [6] discuss the best solution
between MPI, OpenMP or the hybrid (MPI + OpenMP)



model. They conclude that the hybrid programming model
may not be the best solution for all the codes. However in
some situations a significant benefit can be obtained from
this hybrid model. Henty et al. [7] compare MPI versus
a hybrid MPI + OpenMP model in a SMP cluster. They
conclude that the hybrid model is more efficient in very
load unbalanced situations. In the same kind of study on
clusters of multiprocessors, Capello et al. [8] expose that
the superiority of one model depends on: the amount of
parallelization at shared memory level, the communication
patterns and the memory access patterns.

Although in general using two levels of parallelism can
help balance applications most times is not enough. To solve
this there are two main approaches in the literature. One
option is to redistribute the data of the application so that
it is better balanced. The other approach is to redistribute
the computational power so that the imbalance in the data
distribution is solved.

There are several studies of the first approach like
Charm++ [9], an object-oriented parallel programming lan-
guage that employs object migration to achieve load balance.
Adaptive MPI (AMPI) [10] is an implementation of MPI
that uses the load balancing capabilities of Charm++. Bala-
subramaniam et al. [11] propose a library that dynamically
balances MPI processes. The load balancing is done by
redistributing the data at runtime.

The approach of redistributing the data is usually more
rigid in terms of the type of imbalance it can solve. Moreover
the data structures of the application should be able to be
repartitioned and in most of the cases the applications are
aware of the load balancing algorithm and are modified
somehow. We propose a flexible solution transparent to the
applications and the programmer, where we do not need to
modify the application.

There are also relevant works done to solve the imbalance
redistributing the computational power. Zhang et al. [12] pre-
sented a solution for Hyperthreaded (HT) and Simultaneous
Multi Threaded (SMT) processors with a self-tuning loop
scheduler that selects the number of threads that should be
created to execute a parallel loop. For non-dedicated systems
Sievert et al. [13] propose a system that allocates more
processors than needed when the application starts. When
it detects that a process is not performing as expected the
system swaps the MPI process to a less loaded processor. El
Maghraoui et al. [14] use a technique of process migration to
load balance the applications, but they need more resources
than the ones assigned at the beginning of the application
to migrate the processes.

Closer to our approach are the works done by Spiegel
et al. [15] and Duran et al. [1]. They both aim to balance
applications with two levels of parallelism by redistributing
the computational power of the inner level. And they both
do it at runtime without modifying the application. The first
one balances MPI+OpenMP hybrid applications. The second

one balances OpenMP applications with nested parallelism.
Although their algorithms are different, they converge to

the same solution. They both use previous iterations to detect
the load of each process. The algorithm of Spiegel et al.
needs several iterations to converge to a stable and optimal
redistribution and their approach is focused to SMPs with a
large number of CPUs.

We selected the algorithm presented by Duran et al.
(Dynamic Weight Balancing Algorithm: DWB) to port it to
our library because to our knowledge it presented the best
results of dynamic load balancing at runtime and without the
need to modify the application. We analyzed its performance
and we found that it presents several limitations that does
not make it suitable for all kind of hybrid applications. To
understand better the contribution of our LeWI algorithm we
are going to explain further the DWB algorithm in the next
section.

A. DWB: Dynamic Weight Balancing

The DWB algorithm is targeted to iterative applications.
The main loop of the application will be detected with
a Dynamic Periodicity Detector (DPD) [16] so the DWB
algorithm will know the time each MPI process spent
computing and waiting in an iteration of the application.
With this information the algorithm will assign to each MPI
process a number of OpenMP threads proportional to its
computational load (the algorithm will always assign at least
1 thread per MPI process). The algorithm will keep getting
metrics of the application and change its decision at any
moment if it thinks it will improve the performance of the
application. For example because of a change of phase in
the application that needs another distribution of threads.

The main problem of this algorithm is the granularity to
solve the imbalance because it depends on the number of
CPUs available per node.

We have done a synthetic study of the potential of the
DWB algorithm when applied to applications with different
levels of imbalance (for this study we supposed an ideal
parallelization of the application, therefore the inefficiency
can only come from the imbalance between processes). We
wanted to see the impact of the number of CPUs available
per node in the efficiency1 of the algorithm when running
with two MPIs processes per node. In Figure 1 we show
the results obtained for the different number of processors
per node. In the x axis is represented the imbalance of an
application as a percentage between two processes (50%
means a well balanced application, right most side, and 1%
represents a very unbalanced application, left most side).
In the y axis we show the maximum efficiency that can be

1Efficiency is a metric to show the percentage of time that the assigned
CPUs are doing useful computation respect all the time the application is
running. A perfect balanced application will have a 100% of Efficiency.

Efficiency =

∑x=1

num CP Us
(cpu timex)

timeapp∗num CPUs
∗ 100



Figure 1. Imbalance/Efficiency ratio depending on number of CPUs when
using DWB with two MPIs in one node

obtained when using the DWB algorithm (100% of efficiency
means that the applications is using all the computational
time, 50% means that half of the time that the application
is running the CPUs are idle). The different lines represent
the different number of CPUs per node. We can see that
with few CPUs per node (i.e. 2, 4) the efficiency that can
be obtained depends on the imbalance of the application. To
get a good performance in almost all the cases we need a
high number of cores per node (i.e. 16, 32,...).

We have designed and developed the LeWI algorithm to
solve this granularity problem when balancing applications
at runtime in nodes with a moderated number of CPUs. Our
proposal is more flexible than the current state-of-the-art in
several ways:

• It does not need the application to be iterative.
• It can balance efficiently applications with different

levels of imbalance independently of the number of
CPUs available

• It can balance very irregular applications where the im-
balance changes each iteration. Approaches like DWB
can not balance this kind of applications because they
use previous iterations to decide the new distribution.

III. THE DLB (DYNAMIC LOAD BALANCING) LIBRARY

In this section we describe the main characteristics of the
DLB library and the main concepts of its architecture to
understand how it works.

The DLB library aims to balance applications with two
levels of parallelism, currently we have modules imple-
mented to balance hybrid MPI+OpenMP applications where

the MPI is the outer level and OpenMP the inner one. The
OpenMP threads are not allowed to make MPI calls.

An important feature of the DLB library is that we use a
runtime interposition technique to intercept MPI calls. With
this technique we do not need to modify the application to
balance it but we just need to dynamically load the library
when running the application.

We have developed the DLB in a modular way. This
allows to easily:

• Enable the DLB library for different programming
models, at both inner and outer level.

• Add new balancing algorithms.
Independent of the load balancing algorithm used the

DLB library will balance the MPI processes redistributing
the computational power of the OpenMP threads running
underneath. This means that it will try to balance the load
of the processes that are running in the same node (shared
memory). But even balancing within the nodes we are able
to improve the global performance of applications running
in more than one node as we will show in the performance
evaluation section. This version of the library will not be
able to balance MPI processes that are running in different
nodes. So we will need to run more than one MPI process
per node to use our balancing library.

Within DLB we have implemented two different load bal-
ancing algorithms. The DWB algorithm based on a previous
work [1] has been already explained in the previous section.
The second algorithm implemented (called LeWI) is a novel
idea that came from the study of the limitations of the first
one and is further explained in the following section.

A. LeWI: Lend CPUs When Idle

The new balancing algorithm we are presenting is based in
the following observation: the imbalance between processes
implies that one (or more) process is blocked waiting for
others. And while a process is blocked waiting the CPUs it
has assigned to run are idle.

The target of LeWI is to use the computational power of
the idle CPUs to help the processes with a higher load finish
faster.

The main idea of the LeWI algorithm is to lend the
OpenMP threads (CPUs) of an MPI process while it is
waiting in a blocking call to another MPI process running
in the same node that is still doing computation.

When the MPI process that has lent the CPUs gets out of
the blocking call it will recover its CPUs and the process
that was using them will be notified to stop using the lent
threads.

In Figure 2 we can see an example how the algorithm
works. In the example the application is running in a node
with 4 CPUs. It starts two MPI processes in the same
node and each MPI process spawns 2 OpenMP threads. In
Subfigure 2.a we can see the behavior of an unbalanced
application. On the other side subfigure 2.b shows the



Figure 2. Example of LeWI algorithm

execution of the same application with the balancing library
and the Lend algorithm. We can see that when the MPI
process 0 gets into the blocking call it will lend its two
OpenMP threads to the MPI process 1. The second MPI
process will use the newly acquired CPUs as fast as the
programming model allows it. When the MPI process 0
gets out of the blocking call it retrieves its CPUs from
the MPI process 1 and the execution continues with a CPU
equipartition until another blocking call is met

Both actions (lend and retrieve) can take some time until
the changes are reflected in the execution due to restriction
of the programming model used. For instance, in OpenMP,
a change in the number of OpenMP threads is only applied
when entering a new parallel region. This latency means that
while retrieving CPUs the application can run with more
threads than CPUs available. We have seen that this does
not have a significant impact in the performance.

If there are more than two MPI processes running in the
same node the algorithm must decide to which MPI process
(of the ones still running) lends the idle CPUs. Each time a
idle CPU is waiting to be assigned the algorithm calculates a
load factor for each MPI process. This load factor is obtained
by dividing the computational load of the MPI process by
the number of threads it has assigned. The idle CPU will be
assigned to the MPI process with the higher load factor. The
CPUs will be assigned one by one. That is, if the process
that is blocked and lending the CPUs had two threads, we
will calculate to which process must be lent the first thread,
once this is done we will calculate to which process must
be lent the second thread, but taking into account the thread
that was previously lent.

The way to obtain the computational load of the MPI
processes depends on the type of application. If it is an
iterative application (we use DPD to detect it) the computa-
tional load of each MPI process will correspond to their load
during the last iteration. If the application is not iterative the
computational load will be the time accumulated since the
beginning of the application.

IV. PERFORMANCE EVALUATION

In this section we are going to present the results obtained
from the performance evaluation of the algorithms and the
library.

A. Environment

As our target was a clustered architecture, all our experi-
ments have been run in Marenostrum. Marenostrum is based
on Power PC processors, its nodes are JS21 blades with two
IBM Power PC 970MP processors with two cores each and
8Gb of shared memory. This means that we have nodes of
4 cores with shared memory.

We have used the MPICH library as the underlying MPI
runtime and the IBM XL C/C++ version 8.0 compiler
without optimization. The operating system is a Linux 2.6.5-
7.244-pseries64.

B. Methodology

We have executed the experiments with three different
configurations of MPI processes and OpenMP threads per
node. As we are running in nodes with 4 cores the possible
combinations are the following:

• 1 MPI per node with 4 OpenMP threads: This is the
traditional configuration for hybrid applications. Our
runtime can not improve the performance with this
configuration because there is just one MPI per node.
We show it just to compare the performance and to
check that there is no overhead introduced.

• 2 MPIs per node with 2 OpenMP threads.
• 4 MPIs per node with 1 OpenMP thread: This con-

figuration uses the second level of parallelism just to
balance the outer one with the DLB library. In this
case the DWB algorithm is not able to improve the
performance as the algorithm is limited to give at least
one OpenMP thread per process.

In each experiment we are executing each of the three
configurations with four versions:

• The original application.
• The application with DLB and DWB algorithm.
• The application with DLB and LeWI algorithm.
• The original application with 4 threads OpenMP each

MPI process. In this case we are overloading the
node and leaving the responsibility of balancing to the
operating system scheduler. With this version we need
to use a guided schedule for OpenMP (in all the other
cases we are using a static schedule).

We have divided the experiments into two main types,
running in a single node or running in several nodes. We
have executed 5 times each experiment and we show the
average obtained.

We are using the speedup to compare the performance
of each experiment. The speedup has been calculated as

serial time
execution time where the serial time is the time that took the



application to finish with one MPI process and 1 OpenMP
thread, we have used this time because in most of the cases
we do not have a serial version of the application to run.

In all the charts the speedup is shown in the y axis.
In the x axis are represented the different configurations
(explained above) as the number of MPI processes per
node and the number of OpenMP threads per MPI process
at the beginning of the execution. The series labeled as
ORIG correspond to the original application. The DWB and
LeWI series are executions with DLB and the corresponding
balancing algorithm. And the series labeled OS represent
the performance obtained when leaving the responsibility to
balance to the Operating System Scheduler.

C. Applications

In this section we are going to explain briefly the appli-
cations we have used for the performance evaluation.

In Table I we show the Efficiency and Load Balance
for each application when executed with different number
of MPI processes. Efficiency is a metric than shows the
effective usage of the computational power (how to compute
it is explained in Section II-A). Load Balance is a metric
of global imbalance between processes that is calculated as

follows: LB =
∑x=1

num CP Us
(cpu timex)

Maxx=1
num CP Us

(cpu timex)∗num CPUs
∗ 100

Application Num. MPIs Efficiency Load Balance
2 0,664 0,666

BT-MZ class A 4 0,526 0,528
8 0,344 0,351
2 0,990 0,999

SP-MZ class A 4 0,978 0,998
8 0,814 0,984
2 0,810 0,972

LUB 4 0,568 0,914
8 0,285 0,835
4 0,914 0,971
6 0,781 0,893

FLOWer 8 0,733 0,818
12 0,499 0,557
16 0,387 0,429
24 0,174 0,274

Table I
APPLICATIONS’ EFFICIENCY AND LOAD BALANCE

• NAS Multizone benchmarks We can find 3 applica-
tions within the NAS-MZ package [17]: BT, LU and
SP. All the applications are iterative but the BT zone
partition is done asymmetrically. This results in an
unbalanced execution. SP and LU on the other hand
do the zone partition in a symmetric way so their
executions are expected to be balanced. We are only
going to show the results obtained with BT-MZ and
SP-MZ because are representative of a balanced and
unbalanced application as can be seen in Table I.

• LUB computes a LU decomposition on a two di-
mensional matrix structure. The application we are

using is a blocked version, so the different blocks are
the units of work used to distribute the computation.
This application is unbalanced but in an irregular way
because the most loaded MPI process is not the same
during all the execution. Therefore we can see in Table I
that its Efficiency is low while its Load Balance is good
this is because it does not present a global unbalance.

• FLOWer Is a flow solver developed at the German
Aerospace Center (DLR) [18]. Its part of a project to
simulate PHOENIX which is a small scale prototype
of the Space Hopper. We did not know the type
of imbalance that presented this application before
evaluating it. This is an example of improving the
performance of an application without analyzing it first.
In Table I we can see that the more MPI processes it
uses the worst Efficiency and Load Balance it presents.

D. Running in a single node

As we have seen the DLB library is intended to balance
the MPI processes running in the same node. Therefore our
main contribution can be seen when running an application
in a single node. In this section we show the speedups
obtained by some applications when running in a single node
(4 cores).

In Figure 3 we can see the speedup obtained with the
BT-MZ application, this application is very unbalanced but
at the same time presents a very regular imbalance that is
maintained during all it execution. We can see that increasing
the number of MPIs with the original version produces a
decrease in the performance. On the other hand when using
DLB with LeWI algorithm the performance improves as we
increase the number of MPIs per node. The best performance
is obtained with 4 MPIs per node with the LeWI algorithm.
It improves by 13% the speedup with respect to the original
application with the traditional configuration of 1 MPI per
node. Compared to the original application when running
with 4 MPIs per node LeWI obtains a 64% of improvement.

Figure 3. BT-MZ Class A in one node (4 cores)

The BT-MZ application with two MPIs per node is the
only case where the performance of the DWB is close to the
one obtained by LeWI. The reason is that the imbalance in



this case corresponds to a perfect partition of the processors
(1-3)

The SP-MZ performance is shown in Figure 4. As we said
this is a balanced application and we can see that there is no
significant overhead introduced by DLB. The performance
loss experimented by the OS serie is due to the use of the
guided schedule for OpenMP loops.

Figure 4. SP-MZ Class A in one node (4 cores)

The speedup of the LUB application is shown in Figure 5.
The imbalance of this application is very irregular because
the most loaded MPI process changes each iteration. In
this case we can see that the LeWI algorithm improves
the performance of the application. And again the best
performance is obtained by LeWI running with 4 MPIs per
node. This configuration improves by 27% the speedup of
the original application running with 1 MPI per node. The
DWB algorithm, on the other hand, is not able to improve
the performance of the original application because one of
the limitations of this algorithm is that it needs the same
imbalance during successive iterations.

Figure 5. LUB in one node (4 cores)

We can see the performance results for the FLOWer
application in Figure 6. Running with less than 8 MPI
processes this application does not present a significant
imbalance. When running with 4 MPIs, LeWI improves the
performance by 9% with respect to the original application
with 1 MPI per node and a 4,5% respect the original
application running with 4 MPIs per node.

Figure 6. FLOWer in one node (4 cores)

E. Running in several nodes

Although our library can only balance processes running
in the same node, we have seen that we can improve the
global performance of applications running in several nodes
just balancing the processes within a node.

In Figure 8 and 7 we can see the speedup obtained with
the BT-MZ and the SP-MZ applications when running in
2 nodes (8 cores). The results of LeWI are similar to the
ones obtained when running in one node but less speedup
is achieved because we can only balance the processes
running in the same node. Even so we improve the global
performance of the BT-MZ original application while no
overhead is introduced in the execution of the SP-MZ
application. As we can not migrate processes across nodes
in the current implementation, in the case of BT-MZ, to
show the potential of DLB, we have mapped high loaded
processes and light loaded ones in the same node.

Figure 7. SP-MZ Class A in two nodes (8 cores)

In the case of BT-MZ, LeWI running with 2 MPIs
per node increases the speedup by 31% respect to the
original execution with 1 MPI per node. DWB improves the
performance by 14% when running with 2 MPIs per node
respect to the original application with 1 MPI per node.
DWB performs worst because the level of imbalance does
not correspond to any exact thread redistribution (this is due
to the granularity limitation we commented in Section II-A).



Figure 8. BT-MZ Class A in two nodes (8 cores)

We have executed the FLOWer application in 4 and 6
nodes and we can see the results obtained in Figures 9 and
10. As we said the imbalance of this application increases as
the number of MPI processes increase. Because of this the
performance drops as we increase the number of MPIs per
node. We can see that the LeWI algorithm can still improve
the performance of the application when running with 2
MPIs per node or 4 MPIs per node. The best execution of
LeWI is a 2,5% better than the best execution of the original
application.

Figure 9. FLOWer in four nodes (16 cores)

Figure 10. FLOWer in six nodes (24 cores)

It is interesting to see how in Figure 9 when running in

four nodes the LeWI algorithm obtains a better performance
when running with 2 MPIs per node than when running the
original application with 1 MPI per node. This means that
it is obtaining a better performance than a less unbalanced
execution.

In the performance evaluation section we have shown that
with DLB and the LeWI algorithm we can balance regular
and irregular applications. Moreover we can use it with
applications with an unknown pattern of imbalance (or even
balanced applications) and it will improve its performance
or at least will not introduce overhead.

We have seen that the LeWI algorithm outperforms in
almost all the cases the DWB algorithm. Because LeWI does
not suffer from the limitations that has the DWB and can
balance applications with different levels of imbalance or
very irregular.

And last but not least we have been able to improve the
global performance of applications running in several nodes
just balancing the processes inside the nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a load balancing algo-
rithm, LeWI, that has been implemented within a dynamic
library, Dynamic Load Balancing (DLB).

The DLB library allows us to balance applications with
two levels of parallelism without modifying the application
or studying the imbalance it presents. The current version of
the library can balance hybrid MPI+OpenMP applications.

We have shown, in the performance evaluation, that the
LeWI algorithm can balance applications with different kinds
of imbalance (even irregular or non iterative applications).
We obtain improvements in the performance between 9%
and 27% when running with LeWI and 4 MPIs per node
respect to executions with a single MPI per node. When
applied to balanced applications the evaluation shows that it
does not introduce significant overhead.

And what is more interesting, we have been able to
improve the performance of applications running in more
than one node by load balancing the processes inside each
node with our approach. In the evaluation we showed that
LeWI can increase the global performance of an application
up to a 31%.

The solution we are proposing can be used with any
application without the need to analyze its behavior. Because
we have shown that it does not introduce overhead when
can not improve the performance. We think it could even
be integrated with the runtime of the parallel programming
model of choice.

As future work, we want to port the library to other
parallel programming models. We would like to build a
module for Cell Superscalar (CSs) [19]. Because Cell is a
promising new architecture and the task approach used by
CSs could work very well with our balancing policies.



We will implement a hybrid balancing algorithm that
combines the two algorithms presented in this paper (DWB
and LeWI) with this new algorithm we aim to obtain the
benefits of both: the flexibility of LeWI and the stability of
DWB.

If we find a suitable testbed we would like to test the
performance of the algorithm in nodes with more than 4
CPUs. In this case we could experiment with the factor
of running more MPIs in the same node or having more
OpenMP threads to distribute between the processes. In the
first case the decision to which process you lend the CPUs
becomes more important. In the second case the delay until
the decisions are applied can become crucial.

We would like to be able to detect the cases where the
performance of the application can not be further improved
even with the balancing algorithm. And, in these cases the
runtime could predict if running with less threads does not
affect the performance. Then a CPU could be powered-off
and save energy without penalizing the execution time.

However our final objective would be to balance applica-
tions across nodes to maximize the usage of resources. To
achieve this goal we plan to migrate automatically processes
from heavy loaded nodes to lighter loaded ones

ACKNOWLEDGMENT

We would like to thank RWTH Aachen University, and in
particular, Christian Terboven for the FLOWer application.

The researchers at BSC-UPC were supported by the
Spanish Ministry of Science and Innovation (contracts no.
TIN2007-60625 and CSD2007-00050) and the MareIncog-
nito project under the BSC-IBM collaboration agreement.

REFERENCES

[1] A. Duran, M. Gonzàlez, and J. Corbalán, “Automatic thread
distribution for nested parallelism in openmp,” in Proceedings
of the 19th annual international conference on Supercomput-
ing (ICS), 2005, pp. 121–130.

[2] J. Corbalan, A. Duran, and J. Labarta, “Dynamic load bal-
ancing of mpi+openmp applications,” in Proceedings of the
International Conference on Parallel Processing (ICPP2004),
2004.

[3] C. W. A. Basermann, J. Fingberg, G. Lonsdale, B. Maerten,
“Dynamic multi-partitioning for parallel finite element appli-
cations,” in Parallel Computing: Fundamentals and Applica-
tions (ParCo), 2000, pp. 259–266.

[4] K. Schloegel, G. Karypis, and V. Kumar, “Parallel multilevel
algorithms for multi-constraint graph partitioning (distin-
guished paper),” Lecture Notes in Computer Science, vol.
1900, 2001.

[5] G. Karypis and V. Kumar, MeTis: Unstrctured Graph Par-
titioning and Sparse Matrix Ordering System, Version 2.0,
1995.

[6] L. Smith and M. Bull, “Development of mixed mode mpi
/ openmp applications,” Scientific Programming, vol. 9, no.
2-3, 2001.

[7] D. S. Henty, “Performance of hybrid message-passing and
shared-memory parallelism for discrete element modeling,”
in Supercomputing ’00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, 2000.

[8] F. Cappello and D. Etiemble, “Mpi versus mpi+openmp
on ibm sp for the nas benchmarks,” in Supercomputing
’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), 2000.

[9] L. V. Kale and S. Krishnan, “Charm++: Parallel Programming
with Message-Driven Objects,” in Parallel Programming
using C++, 1996, pp. 175–213.

[10] M. A. Bhandarkar, L. V. Kalé, E. de Sturler, and J. Hoeflinger,
“Adaptive load balancing for mpi programs,” in ICCS ’01:
Proceedings of the International Conference on Computa-
tional Science-Part II, 2001.

[11] M. Balasubramaniam, K. Barker, I. Banicescu, N. Chriso-
choides, J. P. Pabico, and R. L. Carino, “A novel dynamic load
balancing library for cluster computing,” in Proceedings of the
Third International Symposium on Parallel and Distributed
Computing(ISPDC), 2004.

[12] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss, “An
adaptive openmp loop scheduler for hyperthreaded smps,” in
ISCA PDCS, 2004, pp. 256–263.

[13] O. Sievert and H. Casanova, “A simple mpi process swapping
architecture for iterative applications,” International Journal
of High Performance Computing Applications, vol. 18, no. 3,
pp. 341–352, 2004.

[14] K. E. Maghraoui, B. Szymanski, and C. Varela, “An architec-
ture for reconfigurable iterative mpi applications in dynamic
environments,” in Proc. of the Sixth International Conference
on Parallel Processing and Applied Mathematics (PPAM),
2005.

[15] A. Spiegel, D. an Mey, and C. H. Bischof, “Hybrid paral-
lelization of cfd applications with dynamic thread balancing,”
in PARA, 2004, pp. 433–441.

[16] F. Freitag, J. Corbalan, and J. Labarta, “A dynamic period-
icity detector: Application to speedup computation,” in 15th
International Parallel and Distributed Processing Symposium
(IPDPS), 2001.

[17] H. Jin and R. F. V. der Wijngaart, “Performance character-
istics of the multi-zone nas parallel benchmarks,” J. Parallel
Distrib. Comput., vol. 66, no. 5, pp. 674–685, 2006.

[18] M. Hesse, B. U. Reinartz, and J. Ballmann, “Inviscid flow
computation for the shuttle-like configuration phoenix,” Notes
on Numerical Fluid Mechanics and Multidisciplinary Desing,
2004.

[19] J. P. Perez, P. Bellens, R. M. Badia, and J. Labarta, “Cellss:
making it easier to program the cell broadband engine
processor,” IBM Journal of Research and Development, pp.
593–604, 2007.


