
TALP: A lightweight tool to unveil parallel efficiency of
large-scale executions

Victor Lopez
victor.lopez@bsc.es

Barcelona Supercomputing Center
Barcelona, Spain

Guillem Ramirez Miranda
guillem.ramirez.miranda@bsc.es
Barcelona Supercomputing Center

Barcelona, Spain

Marta Garcia-Gasulla
marta.garcia@bsc.es

Barcelona Supercomputing Center
Barcelona, Spain

ABSTRACT
This paper presents the design, implementation, and application
of TALP, a lightweight, portable, extensible, and scalable tool for
online parallel performance measurement. The efficiency metrics
reported by TALP allow HPC users to evaluate the parallel effi-
ciency of their executions, both post-mortem and at runtime. The
API that TALP provides allows the running application or resource
managers to collect performance metrics at runtime. This enables
the opportunity to adapt the execution based on the metrics col-
lected dynamically. The set of metrics collected by TALP are well
defined, independent of the tool, and consolidated. We extend the
collection of metrics with two additional ones that can differenti-
ate between the load imbalance originated from the intranode or
internode imbalance. We evaluate the potential of TALP with three
parallel applications that present various parallel issues and care-
fully analyze the overhead introduced to determine its limitations.

KEYWORDS
Performance and optimization, Performance Monitoring

ACM Reference Format:
Victor Lopez, Guillem Ramirez Miranda, and Marta Garcia-Gasulla. 2021.
TALP: A lightweight tool to unveil parallel efficiency of large-scale ex-
ecutions. In PERMAVOST ’21. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The current HPC scenario involves growing systems targeting Ex-
ascale, a diversity of architectures, and applications from different
scientific fields struggling to use the ever-increasing number of re-
sources efficiently. But the efficient use of HPC resources is fragile. It
depends on several factors: Hardware, system software, application
code, and input set, to name the most relevant.

Achieving an acceptable efficiency is crucial when running large
scale executions, as a decrease in the parallel efficiency can lead to
losing large amounts of computational power. A simulation running
on 10.000 cores with a parallel efficiency of 80% is not using 200
cores.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PERMAVOST ’21, June 25, 2021, Stockholm, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

For users, the only way to ensure that their execution is running
efficiently is through performance analysis. But, in general, they
cannot afford to analyze every production run they need to do. We
propose a tool with the following characteristics. First, it is easy
to use; no previous HPC expertise is necessary to use it, neither
to modify the application. Second, it is lightweight, with minimal
added overhead; there is no other way to get users to use a tool in
production simulations. A third aspect is that it reports well defined,
relevant, and easy to understand metrics, the POP metrics [21].
Finally, it reports two additional metrics, providing information
on the load imbalance source, whether it originates in the load
between nodes or inside the computational nodes.

We do not aspire to substitute detailed performance analysis; on
the contrary, we want to claim that it is indispensable and essential.
We envision TALP as a probe that will raise the warning when
further analysis is necessary.

TALP reports the collected metrics at the end of the execution
for the user to decide if they are acceptable, she must change the
configuration to run efficiently, or a more detailed performance
analysis is necessary. Additionally, TALP offers this information at
runtime through an API; it can be used by resource managers, sys-
tem software, or applications implementing dynamic autotuning.

The main contributions of this paper are i) Specification, design,
and implementation of TALP. ii) Offer a report of the POP metrics
without obtaining a detailed trace. iii) Provide an API to consult
this information at runtime. iv) The definition of two new metrics
to distinguish intra and internode load imbalance.

2 RELATEDWORK
There is a great variety of profiling and tracing tools for perfor-
mance analysis; Score-P [15] is a project that tries to unify some of
them. In general, these tools must choose between detail in the col-
lected data and performance or overhead. Extrae [19], Scalasca [11],
and Vampir [2], for example, are trace-based tools that allow the an-
alyst to reconstruct in detail the program’s execution. TAU[20] is a
very flexible tool-set that can change from trace-based or profiling.

Some of the profiling tools that we can find are ompP [7] for
OpenMP programs, mpiP for MPI or gprof [14]. Usually, these
tools output a lot of information and measurements challenging to
manage by a non-expert user.

With TALP, we aim at being a very light-weight tool. Our target
is that it can be used in production runs or even part of the system
software stack. Moreover, the metrics that TALP collects and sum-
marizes are well-defined, well known, and able to capture parallel
execution’s fundamental characteristics.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PERMAVOST ’21, June 25, 2021, Stockholm, Sweden Victor Lopez et al.

Global

efficiency

Parallel

efficiency

Load balance

Intranode LB

efficiency

Internode LB

efficiency

Communication

efficiency

Serialization

efficiency

Transfer

efficiency

Computational

scalability

IPC

scalability

Instructions

scalability

Frequency

scalability

Figure 1: POP metrics

2.1 POP Efficiency metrics
The Center of Excellence (CoE) for Performance Optimization and
Productivity (POP) [5] has designed amethodology for performance
analysis and is promoting its utilization in the HPC community,
more details on the methodology can be found in previous work [4,
21] and on their web page. Each metric they propose is designed to
capture a fundamental characteristic of the execution, and is the
starting point for a more detailed analysis.

For completeness, we describe here the current POP metrics to
justify and put in context our proposal of extending these metrics
with two new ones. One of the main characteristics of the POP
metrics is that they are organized in a hierarchy. Each factor can
be computed as the product of its child metrics, in Figure 1 we can
see the hierarchy of efficiency metrics (in green).

The metrics named scalability are computed based on a baseline
run to determine its relative scalability. As our work is based on
runtime measurements, we do not have a baseline, therefore, we
set aside the Computation scalability and its child metrics.

These efficiency metrics are based on the simplification of a
process into two states: The state in which it is performing com-
putation, is called Useful (blue) and the state in which it is not
performing computation, e.g., communicating to other processes,
is called Not useful (red).

We call P = {p1, . . . ,pn } the set of MPI processes and n the
number of MPI processes. For each MPI process p we define the set
Up = {u

p
1 ,u

p
2 , . . . ,u

p
|U |

} of the time intervals where the application
is performing useful computation (the set of the blue intervals).
We define the sum of the durations of all useful time intervals in
a process p as shown in Equation 2. Similarly we can define U p
and DU p

for the red intervals. We also define the elapsed time E as
shown in Equation 1.

E =maxnp=0DUp + DU p
(1)

DUp =
∑
Up

■ =

|Up |∑
j=1

u
p
j

(2)

PE =

∑
Up ■

E ∗ n
(3)

LB =

∑n
i=1 DUi

n ∗maxni=1DUi
(4) CE =

maxni=1DUi
E

(5)

The Parallel efficiency indicates the amount of time that is being
lost due to the parallelization of the code. Or, what is the same, the
ratio between the time that is being used for useful computation
and the total consumed CPU time. As we said the Parallel efficiency
PE can be computed as the product of the Load balance LB and
Communication efficiency CE and is defined as shown in Equation 3.

The Load balance measures the efficiency loss due to different
loads (useful computation) for each process. And the Communica-
tion efficiency the time spent in communication that is not due to
Load imbalance. Both metrics are defined in Equations 4 and 5

The Communication Efficiency is the product of the Transfer
and the Serialization but as these two metrics cannot be computed
online we will not enter into their details.

2.2 DLB library
TALP is integrated within the Dynamic Load Balancing (DLB) li-
brary. DLB is a framework that aims at improving the performance
of parallel applications and is designed in a modular way. One of
the main non-functional requirements of DLB is transparent and
non-intrusive for the application and user. To achieve this, DLB is
integrated with MPI, OpenMP, and OmpSs.

Additionally, it also offers a user-level API for fine-tuning or for
advanced users. The current version of DLB include three modules:

• LeWI (Lend When Idle [8, 9]): Dynamically changes the
number of threads used by the shared memory programming
model to utilize the node’s computing resources better.

• DROM (Dynamic Resource Ownership Management [6]):
Allows a resource manager or the application to change the
distribution of threads among processes to maximize the
performance or the efficiency.

• TALP (Tracking Application Life Performance): Measures
the parallel efficiency achieved post-mortem and at run time
of a parallel execution and presented in this paper.

3 TALP
3.1 Implementation
TALP is implemented within DLB as a dynamic library, this allows
to use its functionalities by dynamically loading the library, and
operating completely transparent to the user.

TALP is a portable, extensible, lightweight, and scalable tool
for parallel performance measurement. TALP implements the well
defined and established POP metrics and offers an API to consult

TALP: Tracking Application Life Performance PERMAVOST ’21, June 25, 2021, Stockholm, Sweden

them during the execution. The API can be used by the application
or other resource managers or job schedulers.

The basis of the implementation intercepts the MPI calls and
accounts for the time spent by each MPI process doing useful com-
putation or communication. It also takes into account the number
of threads that are being used in case the applications use a hybrid
programming model.

3.2 Running an MPI application with TALP
enabled

TALP is able to collect metrics of MPI applications at run time
without requiring to modify or recompile the application as long as
the system provides a mechanism to preload or override libraries
when running an application. For instance, the dynamic linker ld
in the Linux kernel allows preloading a list of objects with the
LD_PRELOAD environment variable. By dynamically preloading the
DLB library before the MPI symbols, the TALP module is able to
intercept the MPI calls and gather all the needed metrics.

Figure 2: Summary of efficiencies

DLB should also be configured to initialize the TALP module
with the option --talp, and the option --talp-summary=app to
print an application summary at the end of the execution. This
summary will include all the metrics explained in section 2.1, an
example of this summary reported by TALP is shown in Figure 2.

Listing 1 shows an example of how to run any MPI application
with TALP. Sometimes, the mpirun command can run some MPI
functions and those must not be intercepted by DLB. For this reason,
the LD_PRELOAD variable is better set only for the application and
not for the mpirun command.

Listing 1: Running an application with TALP
1 export DLB_ARGS="--talp --talp -summary=app"
2 mpirun env LD_PRELOAD="$DLB_LIBS/libdlb_mpi.so" ./app

3.3 User API
In the previous section, it has been shown how TALP can obtain
metrics of any MPI application for the entire execution. If applica-
tion users decide to obtain TALP metrics for one or more delimited
part of the application, they can do so by using the TALP user
interface.

Users can define as many user-defined Monitoring Regions as
they like, each region can be started and stopped as many times
as necessary, and multiple regions can be nested in any form. The
essential functions are the following and an example of utilization
can be found in Listing 2:

• dlb_monitor_t* DLB_MonitoringRegionRegister Regis-
ter a new monitoring region with a unique name and obtain

a handler, or obtain a previously registered handler if a mon-
itoring region exists with that name.

• void DLB_MonitoringRegionStart Start the monitoring
region. Define the beginning of the delimited region.

• void DLB_MonitoringRegionStop Stop the monitoring re-
gion. Define the ending of the delimited region.

Listing 2: Monitoring Region usage
1 #include <dlb_talp.h>
2 ...
3 // Register a new region or obtain an existing handler
4 dlb_monitor_t *monitor = DLB_MonitoringRegionRegister("Region name

");
5
6 // Start TALP monitoring region
7 DLB_MonitoringRegionStart(monitor);
8 ...
9 // Stop TALP monitoring region
10 DLB_MonitoringRegionStop(monitor);

For each user-defined Monitoring Region, TALP will print a sum-
mary at the end of the execution as long as the option is provided.
This way, the user will have the metrics for the entire execution as
well as the metrics for each region as they were isolated.

Some metrics can also be obtained from within the application
before the end of the execution. The monitor handle is defined as a
struct in the dlb_talp.h header file and some of the data contained
can be publicly accessed. Finally, if only a report is required, TALP
provides another function to print a report of that specific monitor.
Both ways can be seen in Listing 3.

Listing 3: Obtaining the data from the Monitoring Region
1 // Print a report by standard output
2 DLB_MonitoringRegionReport(monitor);
3
4 // Manually obtain some metrics from the monitor
5 int64_t elapsed = monitor ->elapsed_time;
6 int64_t elapsed_useful = monitor ->elapsed_computation_time;
7 float comm_eff = (float)elapsed_useful / elapsed;

3.4 Efficiencies
Additionally to the metrics explained in Section 2.1 we propose two
new metrics that have been implemented in TALP to demonstrate
its potential. The proposed metrics are child metrics of the Load
balance, as can be seen in Figure 1. They consist in separating
the Load balance that is achieved among the different nodes: LB
internode LBα , and the one that is achieved inside the nodes: LB
intranode LBβ . We define N as the number of nodes used and k
as the number of processes per node (k = n/N). We also need to
extend the previous definition of each process as pj,i where j is the
node where the process is running and i the rank of this process
within the node, and accordingly the definition of DUj,i .

LBα =

∑N
j=1

∑k
i=1 DUj,i

maxNj=1
∑k
i=1 DUj,i ∗ N

(6)

LBβ =
maxNj=1

∑k
i=1 DUj,i

maxni=1DUi ∗ k
(7)

The LB internode LBα represents the load balance between the
different nodes. The load of a node is the sum of the useful compu-
tation of all the processes on the node. Thus, the LB among nodes
is computed as the avд/max analogous to the load balance among
processes.

PERMAVOST ’21, June 25, 2021, Stockholm, Sweden Victor Lopez et al.

The LB intranode LBβ represents the load balance of the most
loaded node, once we balance the load inside the nodes the limiting
node will be the most loaded one. For this, we compute LBβ as the
ratio between the best situation and the current one, as this is the
efficiency that we are losing. The best situation would be to have
the most loaded node perfectly balanced, that is the load of the
most loaded node divided by the number of processes per node, and
the current situation is the most loaded process from all of them.

4 EVALUATION
In this section, we present the results from evaluating the perfor-
mance and validation of TALP.

4.1 Environment and methodology
All the experiments have been performed inMarenostrum4.Marenos-
trum4 is a tier1 platform based on Intel Xeon Platinum with 3456
nodes, and each node has two sockets with 24 cores each and 96GB
of main memory. Its nodes are connected through a 100 Gbit/s Intel
Omni-Path network.

We use three different use cases for the evaluation:
PILS is a microbenchmark developed to represent applications

with different patterns of load imbalance. It is implemented
in C and parallelized using MPI, OpenMP, and OmpSs. We
use PILS to do a detailed analysis of the granularity that
TALP can support without adding relevant overhead. Also,
to validate its accuracy when measuring load imbalance.

Alya is a simulation code for high performance computational
mechanics. It can solve different physics and is widely used
for production simulations. Alya is developed using Fortran
and parallelized with MPI, OpenMP and, partially ported to
GPUs. We use a state-of-the-art combustion use case con-
sisting of 100000 elements.

CP2K is an open source molecular dynamics software pack-
age to perform atomistic simulations of solid-state, liquid,
molecular, and biological systems. It is aimed at massively
parallel systems and state-of-the-art molecular dynamics
simulations. It is used by many research groups for their
simulations, it is written in Fortran and parallelized with
MPI [13, 16]. We use the H2O input set, a benchmarking and
flexible input that allows modifying the computational load
by adjusting the number of molecules.

The selection of the use cases is based on the following; on the
one hand, PILS offers flexibility to evaluate in detail the limitations
of TALP and validate it. On the other hand, Alya and CP2K are
HPC production codes, and both belong to the UEABS [18] (Unified
European Applications Benchmark Suite). From the description of
the UEABS, the benchmark suite codes are "[...] scalable, currently
relevant and publicly available[...], of a size which can realistically
run on large systems and maintained into the future". Moreover, from
previous works, we know that, in particular input sets, Alya can
present a severe load imbalance problem [10] while CP2K shows
a communication issue that can limit its scalability [1]. With this
selection, we covered the two main metrics we want to demonstrate
with TALP: Load balance and Communication efficiency.

All the codes have been compiled using the compiler suite Intel
2017.4 and executed with Intel MPI 2017.4.

To validate our approach with Alya and CP2K, we compare
the efficiency metrics collected by TALP with the ones obtained
through the use of the performance toolbox from BSC [3]. This
workflow includes the following steps: First, generate the traces
with Extrae [19], then select the Focus of Analysis and cut it using
Paraver [17]. Finally, compute the efficiency metrics with the Ba-
sic Analysis tool and the Dimemas [12] simulator. This process is
explained in detail by Wagner et al. [21].

4.2 PILS
We divide the evaluation of TALP using PILS into two parts. The
first one is to determine the limitations of TALP in terms of the
granularity it can handle without introducing a relevant overhead.
The second one is to validate the Load Balance metric by generating
a given load balance with PILS.

4.2.1 Overhead Study. To evaluate the overhead introduced by
TALP, we use PILS with the code structure shown in Listing 4, the
loads array contain a value for each MPI process allowing to set a
determined load imbalance, the duration parameter is the duration
in microseconds of the computational task performed.

Listing 4: PILS code structure
1 int me;
2 MPI_Comm_rank(MPI_COMM_WORLD , &me)
3 for (i=0; i++; i<loops){
4 for (j=0; j++; j<loads[me]){
5 //Start TALP monitoring region
6 compute_task(duration);
7 MPI_Allreduce (...)
8 MPI_Barrier(MPI_COMM_WORLD)
9 //Stop TALP monitoring region
10 }
11 }

For this experiment, the PILS variables are set to the following
values shown in Listing 5. In order to depict the granularity in
a meaningful metric we computed the MPI calls per millisecond
based on the duration of the computation between MPI calls as:
MPI calls per ms = 1

duration ∗ 2. We perform each experiment 20
times.

Listing 5: PILS variables for overhead study
1 loops =10000
2 loads=1
3 duration ={1 ,5 ,10 ,20 ,40 ,50 ,100 ,200 ,300 ,400 ,500 ,750 ,1000 ,1500 ,2000}

0

5

10

15

20

1
,0

2
,0

4
,0

5
,0

1
0
,0

2
0
,0

4
0
,0

5
0
,0

1
0
0
,0

2
0
0
,0

4
0
0
,0

2
.0

0
0
,0

%
 o

v
e
rh

e
a
d

MPI calls per ms

TALP

TALP + Regions

Figure 3: Overhead study with PILS

TALP: Tracking Application Life Performance PERMAVOST ’21, June 25, 2021, Stockholm, Sweden

In Figure 3 we can see the overhead introduced by TALP. The
overhead is computed as %overhead = ((

t_talp
t_or iд) − 1) ∗ 100; where

t_talp is the elapsed time of the whole execution when using TALP
and t_oriд the elapsed time of PILS with the same settings with-
out TALP. In the x axis we can see the MPI calls per millisecond
performed, and the two series correspond to the use of TALP to
measure the whole run, while the TALP + Regions series corre-
sponds to adding a TALP region to measure that starts at line 5 and
stops at line 8. This means that it has the same frequency as the
MPI calls.

We can observe that the overhead of TALP is below 5% for MPI
call frequencies below 50 MPI calls per millisecond, and below 10%
when doing 1.000 MPI calls per ms (one MPI call per us). When
using monitoring regions and starting-stopping them at the same
frequency as MPI calls the overhead is higher, but still below 5%
when doing 25 MPI calls per millisecond or less.

0

0,01

0,02

0,03

0,04

1
,0

2
,0

4
,0

5
,0

1
0
,0

2
0
,0

4
0
,0

5
0
,0

1
0
0
,0

2
0
0
,0

4
0
0
,0

2
.0

0
0
,0

S
td

.
D

e
v

.

MPI calls per ms

PILS

TALP

TALP+Regions

Figure 4: St. Dev. overhead study with PILS

In Figure 4 we show the standard deviation between the 20
samples of the same run, to understand if noise or variability is
added with the use of TALP. In the x axis is represented the fre-
quency of MPI calls and the three series correspond to the execution
without TALP (labeled PILS), execution of PILS with TALP using
LD_PRELOAD (labeled TALP) and the execution of PILS with TALP
enabled and a monitoring region that start-stops every iteration
(labeled TALP + Regions).

This experiment shows that there is no variability added by
TALP nor the monitoring regions, the different versions executed
present a standard deviation of the same order of magnitude.

4.2.2 Validation Study. For the validation study we use the same
PILS code structure but setting the variables to the values shown
in Listing 6. We run the experiments with 2 MPI processes and
each process with a different load set by the variable load. Based in
these loadswe compute the theoretical load balance of the execution.
We compute the error of the load balance measured by TALP as
% error = |theoretical_LB −measured_LB | ∗ 100. As Load balance
takes a value between 0 and 1.

Listing 6: PILS variables for LB validation study
1 loops =10000
2 loads={<1,99>, <10,99>, <25,75>, <40,60>, <55,45>, <50,60>}
3 duration ={1 ,10 ,100 ,1000}

In Figure 5 we see the % error of the load balance measured by
TALP for different granularities. We can see that for a frequency

0

0,5

1

1,5

2

2,5

3

<1,99> <10,90> <25,75> <40,60> <55,45> <50,50>

0,51 0,56 0,67 0,83 0,91 1,00

%
 e

rr
o

r

Loads | Theoretical LB

2000 MPIs per ms

200 MPIs per ms

20 MPIs per ms

2 MPIs per ms

Figure 5: % error measuring LB with PILS

of MPI calls below 100 MPI calls per millisecond the error is below
the 1% in all the cases. If there are 1000 MPI calls per millisecond
the error is below 3% for all the loads. The trend is that the error is
slightly higher for well balanced executions, this makes sense as for
well balanced runs a small variation can change the load balance.
From this experiment, we can conclude that TALP offers a precise
measurement of the Load Balance even in extreme cases where the
overhead is almost 10%.

0

0,01

0,02

<1,99> <10,90> <25,75> <40,60> <55,45> <50,50>

0,51 0,56 0,67 0,83 0,91 1,00

S
td

.
D

e
v

.

Loads | Theoretical LB

2000 MPIs per ms

200 MPIs per ms

20 MPIs per ms

2 MPIs per ms

Figure 6: St. Dev. of the LB measured with PILS

On Figure 6 we can see the standard deviation computed for the
different runs of the same kind. We can observe that the executions
with a high frequency of MPI calls (ie. 1000 MPI calls per millisec-
ond) there is more variation than for runs with a lower frequency.
Analyzing the data collected in detail we observe that this variation
in the measurement is because some of the executions obtained a
perfect measured Load Balance, while other showed signs of being
affected by noise, this means that the error of TALP does not come
from overhead or error in measure but from noise in the execution.

We have demonstrated that even for extreme situations with a
high frequency of MPI calls the Load balance measured is within a
3% of error.

4.3 CP2K
4.3.1 Time. The first study of TALP based on CP2K consists in
measuring the difference in the execution time between using TALP
or not, because our primary goal is to provide a lightweight tool
that can be used in production simulations. The elapsed time is com-
puted as the average of 5 different executions solving 10 timesteps.

PERMAVOST ’21, June 25, 2021, Stockholm, Sweden Victor Lopez et al.

0

20

40

60

80

100

120

48 96 192 384 768

E
x

e
cu

ti
o

n
 t

im
e
 [

s]

MPI ranks

CP2K

CP2K + TALP

Figure 7: Execution time of CP2K up to 16 nodes

In Figure 7, we can see the execution time of a CP2K simulation
with and without TALP when scaling up to 16 nodes of Marenos-
trum4 (768 MPI ranks). We can observe that there is not a relevant
difference in the execution time.

0

1

2

3

4

5

6

7

48 96 192 384 768

%
 o

v
e
rh

e
a
d

MPI ranks

CP2K + TALP

Figure 8: % overhead of TALP running CP2K up to 16 nodes

On Figure 8 we find the % overhead computed as before, we can
see that it is below a 7% in all the cases and it increases slowly with
the number of MPI processes.

4.3.2 Efficiencies. To evaluate the efficiencies measured with TALP
we compare the measures obtained by TALP with the efficiencies
obtained by getting a trace, cutting it and passing the cut through
the Basic analysis tool.

0

0,2

0,4

0,6

0,8

1

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

Parallel

efficiency

Communication

eff.

Load Balance LB intranode LB internode

Basic Analysis

TALP

Figure 9: CP2K efficiencies with TALP

In Figure 9 we can see the efficiencies obtained by the execution
of CP2K up to 16 nodes. In the x axis are shown the different

efficiency metrics and the number of MPI ranks used to run the
simulation. For the Basic analysis method, we only obtained traces
for 48 and 96 MPI ranks because the traces when using more MPI
ranks were too big to manage and process with the given tools
(90GB for 192 MPI ranks, 253GB for 384 MPI ranks, and 612GB for
768 MPI ranks).

We can see that for the Load balance metric TALP obtains the
same value as the Basic analysis tool. For the Communication and
Parallel efficiency, the values obtained by TALP are slightly higher
than the ones measured using Extrae + Basic analysis. This is due
to the high amount of communication of this application, and the
fact that the overhead of these tools is accounted as MPI time. The
use of TALP in this case allows us to see that CP2K shows a good
Load balance up to 768 MPI ranks. The Load balance is a bit worse
intranode than the internode, this means that the load is distributed
equally among the different nodes.

We also observe that the main factor that is limiting the scalabil-
ity is the Communication efficiency, with 768 MPI ranks it achieves
a value of 0.5 meaning that half of the computational resources used
by the simulation are not being used to do useful computation.

4.4 Alya
With Alya we solve a combustion problem, we have two different
input sets with the following characteristics:

Simple: Solves a simple chemical reaction, the number of equa-
tions solved is low, the computational load is low, the load
imbalance is very high and there is an important intranode
load imbalance.

Complex: Solves a complex chemical reaction, the computa-
tional load is high, the load imbalance is high.

In the case of Alya we add a monitoring region around the code
computing the chemical reaction, as it is where the load imbalance
appears.

4.4.1 Time. Analogous to the test with CP2K, with Alya we start
measuring the overhead introduced in the execution. The elapsed
time in Alya is computed per timestep, we run the simulation for 10
timesteps and average their duration, then we launch 5 independent
runs and also average their average timestep duration.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

48 96 192 384 768

E
x

e
cu

ti
o

n
 t

im
e
 [

s]

MPI ranks

Alya simple

Alya simple + TALP

Figure 10: Execution time of Alya simple up to 16 nodes

We can find in Figure 10, the execution time when scaling the
simple input set up to 768 MPI ranks, with and without TALP. We

TALP: Tracking Application Life Performance PERMAVOST ’21, June 25, 2021, Stockholm, Sweden

observe that there is no overhead introduced by TALP when scaling
up to 16 nodes.

0

0,5

1

1,5

2

2,5

3

48 96 192 384 768

%
 o

v
e
rh

e
a
d

MPI ranks

Alya simple + TALP

Figure 11: % overhead with TALP running Alya simple

On Figure 10 we can see the overhead measured as percentage
and we see that it is always below 3%.

0

5

10

15

20

25

30

48 96 192 384 768

E
x

e
cu

ti
o

n
 t

im
e
 [

s]

MPI ranks

Alya complex

Alya complex + TALP

Figure 12: Execution time of Alya complex up to 16 nodes

In Figure 12 we depict the execution time of the simulation of the
complex chemical reaction with Alya. We can observe that there
is no relevant difference between the execution with and without
TALP.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

48 96 192 384 768

%
 o

v
e
rh

e
a
d

MPI ranks

Alya complex + TALP

Figure 13: % overhead with TALP running Alya complex

On Figure 12 we can see the overhead for the complex simulation,
and it shows that the overhead is always below 1%.

4.4.2 Efficiencies. To compare the efficiencies obtained by TALP
with the Basic analysis tool, we follow the same method as previ-
ously, obtaining the trace, cutting it, and passing the cut through
the Basic analysis tool. In this case, we have been able to obtain
the traces for all the executions and the data obtained is shown in
Figure 14. In the x axis we see the efficiency metrics obtained with
TALP and the Basic analysis tool and the different MPI ranks used
to run.

0

0,2

0,4

0,6

0,8

1

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

Parallel eff. Communication

eff.

Load Balance LB intranode LB internode

Basic Analysis

TALP

Figure 14: Alya simple efficiencieswith TALP andBasic anal-
ysis

First we observe that for all the metrics the values obtained by
TALP are very similar to the ones computed through the traces. We
can conclude that the metrics collected by TALP are correct.

But we also observe that the parallel efficiency of this execution is
extremely low, and the main issue limiting the scalability is the Load
balance. The Communication efficiency is almost perfect. Looking
in detail at the Load Balance metrics we can see that the intranode
Load balance is very low when running with fewMPI processes and
increases as we increase the number of MPI ranks, this probably
means that there are a few MPI processes very loaded due to the
partition of the domain, and when the problem is divided in more
MPI ranks this load is concentrated in one or few nodes, making
the internode Load balance to decrease as we add more nodes to the
execution. The effect of the intranode imbalance going up is due to
the fact that the most loaded processes are in the same node. From
the data collected with TALP we can conclude that this simulation
is a good candidate to be executed with LeWI to load balance within
a node, and that probably using a round robin distribution of MPI
ranks would be beneficial for the execution also, because this would
distribute the load among the different nodes.

In Figure 15 we can see the efficiencies obtained by the complex
simulation of Alya when running up to 768 MPI ranks. We can
see that the efficiencies computed by TALP are an exact match for
those computed with the basic analysis. Looking into more detail in
the efficiency metrics of this simulation we can say that it has a bad
parallel efficiency and that the communication efficiency is almost
perfect. The main issue limiting the scalability of this simulation
is the load balance and in particular the intranode load balance.
Although the internode load balance is not good, this simulation
would not benefit so much from running with a round robin dis-
tribution of MPI processes among nodes as the main problem is
within the most loaded node.

PERMAVOST ’21, June 25, 2021, Stockholm, Sweden Victor Lopez et al.

0

0,2

0,4

0,6

0,8

1

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

Parallel eff. Communication

eff.

Load balance LB intranode LB internode

Basic Analysis

TALP

Figure 15: Alya complex efficiencies with TALP and Basic
analysis

5 CONCLUSIONS AND FUTUREWORK
In this paper we present TALP, a transparent to the application,
lightweight, and scalable tool to measure the parallel efficiency of
MPI applications. It can be utilized by inexperienced users just by
adding a couple of lines to the submission script and it will report
the POP metrics about parallel efficiency. These metrics capture
fundamental behaviour of the execution, indicating if the run has
an acceptable parallel performance, or if not which are the main
factors limiting it.

Additionally it offers an API for advanced users, that allow mea-
suring specifics part of the code in case the user is interested in
having a more detailed report. The API can also be used by resource
managers or auto-tuning applications that want to adapt the exe-
cution dynamically at runtime. The API gives information that can
be used to decide on requesting more resources or on the contrary
releasing them to achieve a target parallel efficiency.

We show that the overhead added is not relevant while the
frequency of MPI calls is below 50 MPI calls per millisecond, this
corresponds to bursts of useful computation of 20 µseconds. We
demonstrate the use of TALP with and without the API with two
widely used HPC scientific applications.

Finally, we introduce two new metrics that can give relevant
information on the Load balance efficiency and how to address it.
The two new metrics differentiate between the load balance inside
the nodes and across nodes, telling us if it is worth to use the DLB
library to load balance, and to launch he application with a round
robin distribution of processes across nodes.

As future work we plan to add the option of collecting hardware
counters during the execution, and also to measure the frequency
of MPI calls done by the application, in case that it is above the
threshold of acceptable overhead, we can either deactivate TALP
or emit a warning to the users advising them to take the overhead
into account.

REFERENCES
[1] Fabio Banchelli, Kilian Peiro, Andrea Querol, Guillem Ramirez-Gargallo, Guillem

Ramirez-Miranda, Joan Vinyals, Pablo Vizcaino, Marta Garcia-Gasulla, and Fil-
ippo Mantovani. 2020. Performance study of HPC applications on an Arm-based
cluster using a generic efficiency model. In 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
167–174.

[2] Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling. 2010.
Comprehensive performance tracking with vampir 7. In Tools for High Perfor-
mance Computing 2009. Springer, 17–29.

[3] BSC tools for performance analysis. [n.d.]. https://tools.bsc.es.
[4] Marc Casas, Rosa Badia, and Jesús Labarta. 2008. Automatic analysis of speedup

of MPI applications. In Proceedings of the 22nd annual international conference on
Supercomputing. 349–358.

[5] CoE Performance Optimization and Productivity (POP). [n.d.]. https://pop-
coe.eu/.

[6] Marco D’Amico, Marta Garcia-Gasulla, Víctor López, Ana Jokanovic, Raül Sirvent,
and Julita Corbalan. 2018. DROM: Enabling Efficient and Effortless Malleability
for Resource Managers. In Proceedings of the 47th International Conference on
Parallel Processing Companion. ACM, 41.

[7] Karl Fürlinger and Michael Gerndt. 2005. ompP: A profiling tool for OpenMP. In
International Workshop on OpenMP. Springer, 15–23.

[8] Marta Garcia, Jesus Labarta, and Julita Corbalan. 2014. Hints to improve automatic
load balancing with LeWI for hybrid applications. J. Parallel and Distrib. Comput.
74, 9 (2014), 2781–2794.

[9] Marta Garcia-Gasulla, GuillaumeHouzeaux, Roger Ferrer, Antoni Artigues, Victor
López, Jesús Labarta, and Mariano Vázquez. 2019. MPI+ X: task-based parallelisa-
tion and dynamic load balance of finite element assembly. International Journal
of Computational Fluid Dynamics 33, 3 (2019), 115–136.

[10] Marta Garcia-Gasulla, Filippo Mantovani, Marc Josep-Fabrego, Beatriz Eguzkitza,
and Guillaume Houzeaux. 2020. Runtime mechanisms to survive new HPC
architectures: a use case in human respiratory simulations. The International
Journal of High Performance Computing Applications 34, 1 (2020), 42–56.

[11] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika Ábrahám, Daniel Becker, and
Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22, 6 (2010), 702–719.

[12] Sergi Girona, Jesús Labarta, and Rosa M Badia. 2000. Validation of Dimemas
communication model for MPI collective operations. In European Parallel Virtual
Machine/Message Passing Interface UsersâĂŹ Group Meeting. Springer, 39–46.

[13] Jürg Hutter, Marcella Iannuzzi, Florian Schiffmann, and Joost VandeVondele. 2014.
cp2k: atomistic simulations of condensed matter systems. Wiley Interdisciplinary
Reviews: Computational Molecular Science 4, 1 (2014), 15–25.

[14] Susan L Graham Peter B Kessler and Marshall K McKusick. 1982. gprof: a
Call Graph Execution Profiler1. In Proceedings of the Symposium on Compiler
Construction, pp.–. Press, New York„. Cited on p.. Greco, Gianluigi. Citeseer.

[15] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. 2012. Score-p: A joint performance measurement run-time infras-
tructure for periscope, scalasca, tau, and vampir. In Tools for High Performance
Computing 2011. Springer, 79–91.

[16] Thomas D Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V Rybkin, Patrick
Seewald, Frederick Stein, Teodoro Laino, Rustam Z Khaliullin, Ole Schütt, Florian
Schiffmann, et al. 2020. CP2K: An electronic structure and molecular dynamics
software package-Quickstep: Efficient and accurate electronic structure calcula-
tions. The Journal of Chemical Physics 152, 19 (2020), 194103.

[17] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. 1995. Paraver: A tool
to visualize and analyze parallel code. In Proceedings of WoTUG-18: transputer
and occam developments, Vol. 44. Citeseer, 17–31.

[18] Prace, UEABS. [n.d.]. https://repository.prace-ri.eu/git/UEABS/ueabs/.
[19] Harald Servat, Germán Llort, Kevin Huck, Judit Giménez, and Jesús Labarta. 2013.

Framework for a productive performance optimization. Parallel Comput. 39, 8
(2013), 336–353.

[20] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[21] Michael Wagner, Stephan Mohr, Judit Giménez, and Jesús Labarta. 2017. A
Structured Approach to Performance Analysis. In International Workshop on
Parallel Tools for High Performance Computing. Springer, 1–15.

https://tools.bsc.es
https://pop-coe.eu/
https://pop-coe.eu/
https://repository.prace-ri.eu/git/UEABS/ueabs/

	Abstract
	1 Introduction
	2 Related Work
	2.1 POP Efficiency metrics
	2.2 DLB library

	3 TALP
	3.1 Implementation
	3.2 Running an MPI application with TALP enabled
	3.3 User API
	3.4 Efficiencies

	4 Evaluation
	4.1 Environment and methodology
	4.2 PILS
	4.3 CP2K
	4.4 Alya

	5 Conclusions and Future Work
	References

