
DLB: Dynamic
Load Balancing
Library

Marta Garcia-Gasulla

Victor Lopez, (Xavier Teruel)

23rd November 2022 Huawei Training – On-line

Today’s Agenda

Day 3: Wednesday | Topic: Dynamic Load Balancing (DLB) |
Trainers: Marta García, Victor Lopez, and Xavier Teruel (Best
Practices for Performance and Programmability Group)

Session 1 - Load Balance 8:00 - 9:30 Introduction to Load Balance
and Hands-on measuring LB (Xavier Teruel, Victor Lopez)

Session 2 - DLB: LeWI 9:50 - 11:20 Introduction and Hands on of
DLB: LeWI (Marta Garcia, Victor Lopez)

Session 3 - DLB: DROM and TALP 11:50 - 14:00 Introduction and
Hands on of DLB: DROM and TALP (Marta Garcia, Victor Lopez)

DLB Tutorial – Huawei Training – On-line 23rd November 2022

What is Load Imbalance

 Irregular distribution of load among resources.
• Resources can be: computational, network, processing units…

Our target: MPI load Imbalance
• MPI is the standard de facto in HPC applications

• MPI processes do not share data
 Moving data around is expensive

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Load Imbalance: Magnitude of the tragedy

 5% difference

P
ro

cess 1
 (5

5
%

)

P
ro

cess 2
 (4

5
%

) 1
1

 s

1
 s

 5% difference in 1024 processes

P
ro

cess 1
 (5

5
%

)

P
ro

cess 2
 (4

5
%

)

P
ro

cess 1
0

2
5

 (4
5

%
)

…

1
 s

1
1

 s

* 1024

1s * 1024 CPUS = 1024 s = 17 minutes of CPU
17m * 10.000 time steps = 2.844 CPU hours

P
ro

cess 1
 (5

0
%

)

P
ro

cess 2
 (5

0
%

)

1
0

 s

 Ideal

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Load Imbalance: Measuring it

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Which application is more imbalanced?

• A) • B) • C) • D)

Load Imbalance: Measuring it

Our focus is to make the most efficient use of computational resources

𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑑 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒
 =

=
 (𝑡𝑛)
𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠
𝑛=1

𝑀𝑎𝑥𝑛=1
𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠 𝑡𝑛 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠

=
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑛=1

𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠 𝑡𝑛

𝑀𝑎𝑥𝑛=1
𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠 𝑡𝑛

• 𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠 = number of MPI processes

• 𝑡𝑛 = execution time of process n

• 0 < 𝐿𝐵 < 1

• 𝐿𝐵 = 1 Perfect Load Balance)

DLB Tutorial – Huawei Training – On-line 23rd November 2022

t1=3s
t2=1,5s 𝐿𝐵 =

= 0,75

𝑈𝑠𝑒𝑑𝐶𝑃𝑈 = 3 ∗ 2 = 𝟔

𝑈𝑠𝑒𝑓𝑢𝑙 = 3 + 1,5 = 𝟒, 𝟓

Load Imbalance: Measuring it

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Which application is more imbalanced?
• A) • B) • C) • D)

1
0

 s

5
s

7 ∗ 10 + 5

10 ∗ 8
= 0,9375

𝐿𝐵 =
𝑢𝑠𝑒𝑓𝑢𝑙 𝐶𝑃𝑈

𝑢𝑠𝑒𝑑 𝐶𝑃𝑈

7 ∗ 5 + 10

10 ∗ 8
= 0,5625

4 ∗ 10 + (4 ∗ 5)

10 ∗ 8
= 0, 75

10 + 5 + (6 ∗ 7,5)

10 ∗ 8
= 0,75

Load Imbalance: Solution from developers?

 Expensive in terms of:
• Computational resources
• Personal resources

What happens if we change the input?

 And the hardware?

 Is it a real solution?

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Load Imbalance: Where?

Running
function

Cycles per
µ second

IPC

MPI
calls

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Load Imbalance: Still searching for a solution…

Different sources… different solutions
• Data distribution

 Redistribute New Input, redistribute again?

• Hardware heterogeneity

 Tune specifically for architecture New machine, tune again?

• Infrastructure

 Adapt code to infrastructure New software or hardware, adapt again?

• Software/Hardware variability
 ???

Our Solution: React when imbalance is happening
• We can not fight it, lets adapt!

• One solution to rule solve them all

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Be water, my friend !!!

Bruce Lee

The DLB Library

Dynamic Load Balancing - DLB

Our objectives:
• Address all sources of imbalance

o Fine Grain, dynamic…

 How?

o Detect imbalance at runtime

o React immediately

• Real product for HPC
 Use common programming model/environment

o MPI + OpenMP

• Transparent to the application
 Runtime library

DLB Tutorial – Huawei Training – On-line 23rd November 2022

The idea: Lend When Idle (LeWI)

Original

DLB Tutorial – Huawei Training – On-line 23rd November 2022

 LeWI HPC Appl.

MPI 1

cpu1

MPI 2

cpu2 cpu3

cpu1 cpu2

cpu4

MPI call

MPI call

Shared Memory

Lend

Retrieve

HPC Appl.

MPI 1

cpu1

MPI 2

cpu2 cpu3 cpu4

MPI call

MPI call

Shared Memory

Load balance MPI processes within a computational node
• Use computational resources of a process when not using them to speed up

another process in the same node

LeWI: A image trace is worth a thousand words

Original:
• 2x8

With LeWI:
• 2x8

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Computation Communication

DLB: Main concepts

 CPU (core): Minimum computing unit acknowledged by DLB, where
one thread (and only one at the same time) can run.

 Idle CPU: A CPU that is not being used to do useful computation.

Owner: Process that owns a CPU. A process owns the resources where
it is started. A CPU can only be owned by one process at the same
time.

 Lend: When the owner of a CPU is not using it, the CPU can be lent to
the system. When a CPU is lent, a process that it is not its owner can
use it.

 Claim: When the owner of a CPU wants to use it after lending it, the
owner can claim the CPU.

Ask for Resources: A process of the system can ask DLB for idle CPUs to
speed up its execution.

DLB Tutorial – Huawei Training – On-line 23rd November 2022

DLB: How?

Runtime library: DLB
• Transversal to different layers of the software stack

• Using standard mechanisms whenever possible
 Facilitate the adoption without modifying existing codes

• MPI:
 Intercept MPI calls using PMPI standard interface

• OpenMP:
 Use standard OpenMP API

 omp_set_num_threads(x)

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Application

MPI

OpenMP

D
LB

 PMPI Interception

OMP Standard

Operating System

Hardware

PMPI Interception

PMPI: Profiling interface for MPI
• MPI libraries implement an internal interface (PMPI) that implements the

MPI call code

• MPI calls can be redefined in a dynamic library

• The intercepting library is loaded when starting the application
 export LD_PRELOAD = libdlb_mpi.so

 The dynamically loaded library has preference

• Within the intercepted call the
corresponding PMPI function must be
called

DLB Tutorial – Huawei Training – On-line 23rd November 2022

PMPI Interception

Using DLB and Extrae
• Both use PMPI interface

 Integration:
• Extrae intercepts MPI calls with PMPI
• DLB API called from Extrae before and after each MPI call
• DLB does not intercept MPI calls

 export LD_PRELOAD = libdlb_mpi_instr.so

 And other profiling tools using PMPI?
• We are studding using PnMPI

 Allows n tools intercepting MPI

 An order between them must be selected
 All the tools must support PnMPI

 So far no conflicts have been found… Future Work

DLB Tutorial – Huawei Training – On-line 23rd November 2022

MPI blocking mode

MPI is greedy in the use of CPU
• By default it will busy wait for messages/synchronizations to arrive

• If the CPU is used by the MPI process waiting for the message we can not
use it for doing useful computation by another thread.

Different behavior for different MPI libraries

We have two options:
• Leave all the CPUs assigned to a process but one

 export DLB_ARGS += “--lewi-mpi=no”

• Tell MPI not to busy wait
 export I_MPI_WAIT_MODE=1

 export DLB_ARGS += “--lewi-mpi”

DLB Tutorial – Huawei Training – On-line 23rd November 2022

MPI blocking mode

 --lewi-mpi =no

 --lewi-mpi

DLB Tutorial – Huawei Training – On-line 23rd November 2022

OpenMP: Malleability

OpenMP is malleable, we can change number of threads
• omp_set_num_threads(int x)

• But only outside a parallel region

But some programming practices can avoid malleability:
• Program in function of the thread Id

 omp_get_thread_num(int x)

 Fear if you see this call!

• Do reductions “by hand”
 Allocate memory in function of the number of threads and each one will

reduce in its piece of data.

• Avoid these practices please!

DLB Tutorial – Huawei Training – On-line 23rd November 2022

OpenMP: Malleability

Use omp_set_num_threads(x)
• It can only be called outside a parallel region (says the OpenMP standard)

• Impact in DLB…

DLB Tutorial – Huawei Training – On-line 23rd November 2022

OMP PARALLEL
OMP DO

OMP DO

OMP DO

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

OpenMP in DLB

 Add a call to int DLB_Borrow(void) before each parallel

 int DLB_Borrow(void) will check the system for idle CPUs and
update the number of threads in case necessary

 This can be done by an automatic replacement in the code

 Latest news!
• Working in using OMPT (tracing tool for OpenMP to appear in 5.0)

Meanwhile…

DLB Tutorial – Huawei Training – On-line 23rd November 2022

DLB_Borrow();

#pragma omp parallel do

for (i=0; i<n; i++){

 compute…

 …

}

int DLB_Borrow(void){

 check_idle_cpus(x);

 set_omp_num_threads(x);

}

Integration with Nanos++

Nanos++: Parallel Runtime developed at BSC
• Implements OpenMP 4.5 and OmpSs

• Forerunner for OpenMP

Mercurium: Source to source compiler developed at BSC
• Generates code for Nanos++

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Integration with Nanos++

There is no need to modify the application at all
• The runtime will call the DLB API where necessary to ask for resources or

return them

Compile with Mercurium

Run enabling DLB
• Mandatory: NX_ARGS+= “--enable-dlb --enable-block”

• Recommended: NX_ARGS+= “--force-tie-master”

• In some cases: NX_ARGS+= “--warmup-threads”

Win!

DLB Tutorial – Huawei Training – On-line 23rd November 2022

More malleability with OmpSs

OpenMP (Fork-join model)

DLB Tutorial – Huawei Training – On-line 23rd November 2022

OMP PARALLEL

OMP PARALLEL

M
ai

n

Ta
sk

T T T

T T

T T

T T

T

T

T T T T

C
an

 a
d

ju
st

 t
h

re
ad

s

OmpSs(Task based)

Integration with Nanos++

Taking advantage of the integration and increased OmpSs
malleability

• Threads are autonomous
 Fast response

 The master thread is not
 a bottleneck

 Benefit from imbalances
 at OmpSs level too

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Summing up to use DLB…

 export LD_PRELOAD = libdlb_mpi.so

 If we want to use the CPU executing the MPI calls
• export I_MPI_WAIT_MODE=1

• export DLB_ARGS += “--lend_mode=block”

 else
• export DLB_ARGS += “--lend_mode=1CPU”

 If we use Nanos++
• DLB_ARGS+= “--policy=auto_LeWI_mask”

• NX_ARGS+= “--thread_manager=dlb”

• NX_ARGS+= “--force-tie-master --warmup-threads”

 else
• Add dlb_update_resources() before each #pragma omp parallel
• DLB_ARGS+= “--policy=LeWI”

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Multiple Applications

We can share CPUs between different applications running in the
same node

Do not need MPI

Transparent to the user, works out of the box

DLB Tutorial – Huawei Training – On-line 23rd November 2022

DROM
Dynamic Resource

Ownership Management

DROM: Dynamic Resource Ownership Management

API for superior entity
• Job Scheduler

• Resource manager

• User

Allow to change the assigned resources (CPUs) to a process

Some possible use cases:
• A) User wants to give more priority to one of the processes in the node

• B) Job scheduler wants to start a high priority app. using the resources
allocated for an other application

• C) Application is not using the resources in a node efficiently (i.e the
bottleneck is on another node) can free them to avoid accounting.

DLB Tutorial – Huawei Training – On-line 23rd November 2022

DROM: Use cases

 A) User:
Increase priority to
App2

 B) Job Scheduler:
Run High priority
App2 in resources
assigned to App1

 C) App1: Release 2
CPUs because not
using efficiently

DLB Tutorial – Huawei Training – On-line 23rd November 2022

App1

App2

App1

App2

App1

DROM: How to

DLB Tutorial – Huawei Training – On-line 23rd November 2022

App1

App2

App1

App2

App1

7
6

4
3
2
1
0

5

A)

$> dlb_taskset -p pid_app2 –c 0-5

B)

$> dlb_taskset –c 0,1 ./App2

C)
DLB_DROM_SetProcessMask(my_pid, [0,0,1,1]);

About DLB

Current stable version 1.3.1 (October 2017)

New release 2.0 coming up for Christmas 2017
• DROM

• New asynchronous API

• OMPT support

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Work in Progress

DROM
• Implemented, evaluate performance

OMPT
• Enable use for any OpenMP runtime supporting OMPT (OpenMP 5.0)
• Not “legal” according to the standard

 Study performance in many-core
• i.e. Intel Xeon Phi KNL 256 threads

 Runtime Monitoring Tool
• Monitor different levels and collect metrics
• Offer an API to consult metrics during execution

 Load Balancing across containers
• Studding feasibility, performance, issues and opportunities
• Docker, Singularity…

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Challenges

Transversal to different layers, make the cooperate!!
• MPI libraries are not willing to expose the non busy wait mode

 They want all CPU cycles for them, but they are wasting them…

• OS could help handling the cores? Giving priorities?

Change mentality from “heroism programming” to trusting the
runtime

• Applications should stop doing things “by hand”
• Let’s help them:

 By addressing their needs and offering non intrusive solutions
 By offering transversal solutions

Malleability, malleability everywhere!!!
• Application, Programming model, job scheduler…

DLB Tutorial – Huawei Training – On-line 23rd November 2022

FAQ

FAQ

Why not “learn” and use previous redistribution?

What about data locality?

My application does not perform well with OpenMP

What about load balance between nodes?

Why not overload CPUS, it’s the same you do!

How do you decide to which process CPUS go?

 I already have a load balancing algorithm within my application

How do I know the different options in DLB?

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Why not “learn” and use previous redistribution?

 There is a policy in DLB that does a “static” distribution of CPUs based
in the load of each process

• --policy=WEIGHT

 Detects iterations, based in the MPI calls pattern

 Computes an optimum distribution of CPUs

 Applies it

• Performance was much worse than LeWI LeWI is more flexible
• Code is deprecated

 Another policy that merge the functionality of WEIGHT and LeWI was
implemented (Redistribute and Lend)

• --policy=RaL

• Performance was equal to the one obtained by LeWI

We can recover these if we find the need

DLB Tutorial – Huawei Training – On-line 23rd November 2022

How do you decide to which process CPUS go?

We do not decide it, it is first come, first served

So far, our experience is: If there is a free CPU and some one
willing to use it, do it.

But… we might implement some accounting in the future if more
actors come in… different apps, different users, different
programming models…

We DO decide which CPU to take first…

DLB Tutorial – Huawei Training – On-line 23rd November 2022

What about data locality?

 In some kernels spawning threads to another socket can have a
penalty

We can choose with flag --priority in DLB_ARGS
environment variable which CPU a process will acquire first when
asking for resources

• none: Take the first free CPU, does not take into account topology

• affinity_first: Take first CPUs that are “affine” to me, and then the others

• affinity_full: Take first CPUs that are affine to me, take CPUs from another
socket only if all the CPUs in that socket are free (meaning no body is
running there)

• affinity_only: Take only CPUs that are affine to me

DLB Tutorial – Huawei Training – On-line 23rd November 2022

My application does not perform well/it is not
parallelized with OpenMP

Don’t worry!

 In fact usually it is the best configuration… gives more flexibility
to DLB

DLB Tutorial – Huawei Training – On-line 23rd November 2022

What about load balance between nodes?

We do not have any solution for this yet

 It is a quite different problem
• Big difference in granularity, moving data between nodes is expensive

But… good news is…
• We are achieving very good

results by balancing inside the
node even when running up to
1024 nodes

DLB Tutorial – Huawei Training – On-line 23rd November 2022

I already have a load balancing algorithm
within my application

Does it solve this?

Fine grain + system noise

Blue lines original application (2 different runs)

Red lines same run with DLB (2 different runs)

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Clearly visible spikes without DLB
are absorbed by DLB

How do I know the different options in DLB?

[DLB_HOME]/bin/dlb --help

The library configuration can be set using arguments

added to the DLB_ARGS environment variable.

All possible options are listed below:

--policy: None [no, JustProf, LeWI, Map, WEIGHT, LeWI_mask,

auto_LeWI_mask, RaL]

--statistics: no (bool)

--drom: no (bool)

--barrier: no (bool)

--just-barrier: no (bool)

--lend-mode: 1CPU [1CPU, BLOCK]

--verbose:

{api:microlb:shmem:mpi_api:mpi_intercept:stats:drom}

--verbose-format: node:pid:thread {node:pid:mpinode:mpirank:thread}

--trace-enabled: yes (bool)

--trace-counters: yes (bool)

--mask: (string)

--greedy: no (bool)

--shm-key: 7725 (string)

--bind: no (bool)

--aggressive-init: no (bool)

--priority: affinity_first [none, affinity_first, affinity_full,

affinity_only]

--debug-opts: {register-signals:return-stolen}

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Thank you

marta.garcia@bsc.es

victor.lopez@bsc.es

https://pm.bsc.es/dlb

mailto:marta.garcia@bsc.es
mailto:victor.lopez@bsc.es
https://pm.bsc.es/dlb

DLB
Hands-on

Evironment (Nord3)

84 compute nodes

Each node:
• 2x E5–2670 SandyBridge-EP 2.6GHz cache 20MB 8-core

• 16 cores per node divided into two sockets

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Account and Login Information

Username and password
• Username: nct010<your_id_here>

• Password: OmpSsDLB.0<your_id_here>

Example: for identifier 07, account information would be:
• Username: nct01007

• Password: OmpSsDLB.007

Login in nord3:
• ssh nct01007@nord1.bsc.es -x

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Getting the examples package

 Exercises available in http:/pm.bsc.es

• Exercise scripts in .html and .pdf formats

• A single package including all source files

• Simple to configure, compile and execute

DLB Tutorial – Huawei Training – On-line 23rd November 2022

pm.bsc.es/ompss-docs/examples/README.html

pm.bsc.es/ompss-docs/examples/OmpSsExamples.pdf

pm.bsc.es/ompss-docs/examples/ompss-ee.tar.gz

Starting the hands-on

$> cp /apps/PM/ompss-ee.tar.gz .

$> tar -xzf ompss-ee.tar.gz

$> cd ompss-ee

$> source configure.sh

$> cd 05-ompss+dlb

DLB Tutorial – Huawei Training – On-line 23rd November 2022

05-ompss+dlb

Subfolders include different benchmarks and examples

• pils: (Parallel ImbaLance Simulator) Synthetic benchmark to simulate
different imbalance patterns

• lulesh: Benchmark from LLNL, represents a typical hydrocode, like
ALE3D

• lub: LU matrix decomposition by blocks

• pils-multiapp: Example for a multi application situation

DLB Tutorial – Huawei Training – On-line 23rd November 2022

Inside each folder…

To build:
• $> make

 We can see…
• [app]-p Binary for performance

• [app]-i Binary for tracing

• [app]-d Binary for debugging

• run_once.sh For running/obtaining trace if one run

• trace.sh Auxiliary script for tracing

• multi_run.sh To run several executions and compare execution time

DLB Tutorial – Huawei Training – On-line 23rd November 2022

