
DLB: Dynamic
Load Balancing
Library

Marta Garcia-Gasulla

Victor Lopez

November 2022 Tutorial

Dynamic Load Balancing - DLB

Our objectives:
• Address all sources of imbalance

o Fine Grain, dynamic…

 How?

o Detect imbalance at runtime

o React immediately

• Real product for HPC
 Use common programming model/environment

o MPI + OpenMP

• Transparent to the application
 Runtime library

2

DLB structure

Three modules:
• LeWI: For fine grain load balancing

• DROM: For coarse grain resource management

• TALP: For performance measurement

Common infrastructure
• Integration with different layers of software stack

• API

• Shared memory App.

Job Sched.

MPI

OpenMP

OS

HW
A

P
I

LeWI

P
M

P
I

DROM

CPU
status

O
M

P
T

TALP
Process
status

Shared
Mem. OmpSs

Three modules,

integrated but
independent

3

DLB integration

 Integration with different layers:
• Application: DLB offers a user-level API

• Job Scheduler: DLB offers an API for resource managers

• MPI: PMPI interception

• OpenMP:
 OMPT interception (few OpenMP runtimes support it)

 API added by user

 OpenMP free agent threads NeW!

• OmpSs: Runtime integration with DLB library, the
OmpSs runtime calls the DLB library

App.

Job Sched.

MPI

OpenMP

OS

HW

A
P

I
P

M
P

I
O

M
P

T

OmpSs

DLB offers mechanisms to be

transparent to the application or user.
DLB API is useful for advanced

users that have a good knowledge of
their application.

4

DLB: Main concepts

 CPU (core): Minimum computing unit acknowledged by DLB, where
one thread (and only one at the same time) can run.

 Idle CPU: A CPU that is not being used to do useful computation.

Owner: Process that owns a CPU. A process owns the resources where
it is started. A CPU can only be owned by one process at the same
time.

 Lend: When the owner of a CPU is not using it, the CPU can be lent to
the system. When a CPU is lent, a process that it is not its owner can
use it.

 Claim: When the owner of a CPU wants to use it after lending it, the
owner can claim the CPU.

Ask for Resources: A process of the system can ask DLB for idle CPUs to
speed up its execution.

5

LeWI
Lend When Idle

Lend When Idle (LeWI)

Our objectives:
• Address all sources of imbalance

o Fine Grain, dynamic…

 How?

o Detect imbalance at runtime

o React immediately

• Real product for HPC
 Use common programming model/environment

o MPI + OpenMP

• Transparent to the application
 Runtime library

7

Lend When Idle (LeWI)

8

 The idea: Use computational resources of a process when
not using them to speed up another process in the same
node

 Decentralized, communication is
done through shared memory

HPC Appl.

MPI 1

cpu1

MPI 2

cpu2 cpu3

cpu1 cpu2

cpu4

MPI call

DLB
Idle cpus

Lend 2 cpus
2 Lend 4 cpus 4

MPI call

Shared Memory

LeWI a runtime balancing algorithm for nested parallelism.
In Proceedings of International Conference of Parallel Processing (ICPP 2009).

LeWI: Implementation

 MPI interception: Use standard PMPI interception avoids
recompiling, DLB can be used with LD_PRELOAD.

 Second level of parallelism: We need shared memory
parallelism. Current version supports OmpSs and OpenMP.
 Must be malleable. Lack of malleability limits performance

 Malleability can be limited by the programming model or the
application.

 OpenMP: Three levels/options of integration:
 API: Works with any OpenMP implementation, must modify the code

and link with DLB.

 OMPT: Only works with OpenMP implementations implementing OMPT.

 Free agents: Works preloading our own version of OpenMP
implementation (LLVM based)

 OmpSs: Fully integrated with DLB, high malleability.

9

LeWI: Malleability vs. Programming Model

OMP PARALLEL

OMP DO

OMP DO

OMP DO

 OpenMP
• Single parallel region

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

 OpenMP
• Multiple parallel regions

C
an

 a
d

ju
st

 t
h

re
ad

s

M
ai

n

Ta
sk

T T T

T T

T T

T T

T

T

T T T T

 OmpSs

 OpenMP

• Fork-join model

• Can only change
number of threads
outside parallel
region

 OmpSs

• Task based model

• Can change number
of threads at any
point

• A thread can not
leave a task
unfinished

Number of threads can be changed

 OpenMP
• Free agent threads

OMP PARALLEL

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

TA

SK

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

TA
SK

 TA
SK

TA

SK

TA
SK

TA
SK

11

OpenMP/OmpSs Summary

OpenMP OpenMP + OMPT OpenMP + free
agent

OmpSs

Requirements None Intel OpenMP 2018
/ LLVM 8.0 or
greater

Own LLVM
OpenMP runtime

CPU binding No supported Rebind through
OMPT

Yes Yes

Malleability Only outside
parallel
regions

Only outside parallel
regions

Malleability
through tasking

Yes

Integration Add
DLB_borrow
before each
parallel region
+
LD_PRELOAD

LD_PRELOAD LD_PRELOAD Transparent,
integrated
through OmpSs

13

Success Story 1: ParMMG

 Parallel mesh adaptation of
3D volume meshes. High
imbalance and changing
between iterations. Pure MPI
code

Added OmpSs parallelization to one loop + 1 call to DLB API.
1.2x Speedup overall

execution.

14

Success Story 2: Alya coupled codes

 Respiratory simulation
coupling 2 codes:

• Fluid + particle tracking

• 256 MPI ranks Fluid

• 72 MPI ranks Particles

 Zoom in 1 node with DLB

 3 Actions:

• Load Balance Fluid

• Load Balance Particles

• Load Balance 2 codes

O
ri

gi
n

al

W
it

h
 D

LB

15

LeWI API

 int DLB_Enable(void);
• Enable DLB and all its features in case it was previously disabled otherwise it has no effect

 int DLB_Disable(void);
• Disable DLB actions for the calling process.

 int DLB_SetMaxParallelism(int max);
• Set the maximum number of resources to be used by the calling process.

 int DLB_UnsetMaxParallelism(void);
• Unset the maximum number of resources to be used by the calling process.

 int DLB_Lend(…);
• Lend current CPUs

 Int DLB_Reclaim(…);
• Reclaim CPUs owned by the process

 int DLB_AcquireCpu(…);
• Acquire a specific CPU, equivalent to Reclaim if the process it the owner and to Borrow if not.

 int DLB_Borrow(…);
• Borrow possible CPUs registered on DLB

 int DLB_Return(…);
• Return claimed CPUs of other processes

 int DLB_Barrier(void);
• Barrier between processes in the node

These functions have 4
different versions:
- void: Any CPU.
- int CPU_Id: the specified CPU
- int num_CPUs: the amount of

CPUs indicated
- CPUmask: the CPUs indicated

in the mask

16

DROM
Dynamic Resource

Ownership Management

DROM: Dynamic Resource Ownership Management

API for superior entity
• Job Scheduler

• Resource manager

• User

Allow to change the owner of resources (CPUs)
• By the process

• By an external entity (Resource manager)

DROM: Enabling Efficient and Effortless Malleability for Resource Managers.
 In Proceedings of International Conference on Parallel Processing (ICPP 2018)

18

DROM: Dynamic Resource Ownership Management

App.

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

DROM setProcessMask

CPU
status

Process
status

Shared
Mem.

RM

DLB_DROM_Attach

setProcessMask
cpu1

19

DROM: Use cases

 A) User:
Increase priority to
App2

 B) Job Scheduler:
Run High priority
App2 in resources
assigned to App1

 C) App1: Release 2
CPUs because not
using efficiently

App1

App2

App1

App2

App1

20

DROM: How to

App1

App2

App1

App2

App1

7
6

4
3
2
1
0

5

A)

$> dlb_taskset -p pid_app2 –c 0-5

B)

$> dlb_taskset –c 0,1 ./App2

C)
DLB_DROM_SetProcessMask(my_pid, [0,0,1,1]);

21

DROM API

 int DLB_DROM_Attach(void);

• Attach current process to DLB system as DROM administrator

 int DLB_DROM_Detach(void);

• Detach current process from DLB system

 int DLB_DROM_GetNumCpus(int *ncpus);

• Get the number of CPUs in the node

 int DLB_DROM_GetPidList(int *pidlist, int *nelems, int max_len);

• Get the list of running processes registered in the DLB system

 int DLB_DROM_GetProcessMask(int pid, dlb_cpu_set_t mask, dlb_drom_flags_t flags);

• Get the process mask of the given PID

 int DLB_DROM_SetProcessMask(int pid, const_dlb_cpu_set_t mask, dlb_drom_flags_t flags);

• Set the process mask of the given PID

 int DLB_DROM_PostFinalize(int pid, dlb_drom_flags_t flags);

• Unregister a process from the DLB system

22

TALP
Tracking Application Live

Performance

TALP: Tracking Application Live Performance

Profiling tool with:
• Low overhead

• Report POP metrics

• API to obtain metrics at runtime

• API to instrument code and profile regions of code

Current version profiles MPI performance

TALP a lightweight tool to Unveil Parallel Efficiency of Large Scale Executions.
In Proceedings of Performance Engineering, Modelling, Analysis, and
Visualization Strategy (Permavost 2021).

24

TALP

25

App.

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call

MPI call

TALP

P
M

P
I

TALP

Process
status

Compute
time

MPI time get_metrics A
P

I

P
M

P
I

A
P

I

get_metrics

Process
status

Compute
time

MPI time

MPI Finalize MPI Finalize

Why is more than “yet another profiling tool”?

A profiler will report
same “issue” while both
cases have very different
problems.

TALP will report a low
Load Balance for App A
and a low
Communication
efficiency for App B

26

App. A

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call

MPI call

App. B

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call MPI call
MPI call MPI call
MPI call MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

Using TALP

DLB_ARGS=" --talp [--talp-summary=pop-metrics]"

env LD_PRELOAD="$DLB_LIBS/libdlb_mpi.so" ./app

27

At finalization
include < dlb_talp .h >

...

// Register a new region or obtain an existing handler

dlb_monitor_t * monitor = DLB_MonitoringRegionRegister

(“Name”);

// Start TALP monitoring region

DLB_MonitoringRegionStart(monitor);

...

// Stop TALP monitoring region

DLB_MonitoringRegionStop(monitor);

...

// Print a report by standard output

DLB_MonitoringRegionReport(monitor);

...

// Manually obtain some metrics from the monitor

int64_t elapsed = monitor->elapsed_time;

int64_t elapsed_use =monitor->elapsed_computation_time;

float comm_eff = (float) elapsed_use / elapsed ;

At runtime

Success story 3: Malleable simulation

Application that adjust
number of resources used
based on measures by
TALP

28

About DLB

Current stable: Version 3.2 (2022-03-16)
• LeWI

• DROM

• TALP

 Free Download under LGPL-v3 license: https://pm.bsc.es/dlb-downloads

 User Guide: https://pm.bsc.es/ftp/dlb/doc/user-guide/

29

https://pm.bsc.es/dlb-downloads
https://pm.bsc.es/dlb-downloads
https://pm.bsc.es/dlb-downloads

Thank you

marta.garcia@bsc.es

victor.lopez@bsc.es

https://pm.bsc.es/dlb

mailto:marta.garcia@bsc.es
mailto:victor.lopez@bsc.es
https://pm.bsc.es/dlb

