
DROM: Enabling Efficient and Effortless Malleability for
Resource Managers

Marco D’Amico
Barcelona Supercomputing Center

Barcelona, Spain
marco.damico@bsc.es

Marta Garcia-Gasulla
Barcelona Supercomputing Center

Barcelona, Spain
marta.garcia@bsc.es

Víctor López
Barcelona Supercomputing Center

Barcelona, Spain
victor.lopez@bsc.es

Ana Jokanovic
Barcelona Supercomputing Center

Barcelona, Spain
ana.jokanovic@bsc.es

Raül Sirvent
Barcelona Supercomputing Center

Barcelona, Spain
raul.sirvent@bsc.es

Julita Corbalan
Universitat Politecnica de Catalunya

Barcelona, Spain
juli@ac.upc.edu

ABSTRACT
In the design of future HPC systems, research in resource manage-
ment is showing an increasing interest in a more dynamic control
of the available resources. It has been proven that enabling the
jobs to change the number of computing resources at run time, i.e.
their malleability, can significantly improve HPC system perfor-
mance. However, job schedulers and applications typically do not
support malleability due to the common belief that it introduces
additional programming complexity and performance impact. This
paper presents DROM, an interface that provides efficient malleabil-
ity with no effort for program developers. The running application
is enabled to adapt the number of threads to the number of as-
signed computing resources in a completely transparent way to the
user through the integration of DROM with standard programming
models, such as OpenMP/OmpSs, and MPI. We designed the APIs
to be easily used by any programming model, application and job
scheduler or resource manager. Our experimental results from two
realistic use cases analysis, based on malleability by reducing the
number of cores a job is using per node and jobs co-allocation,
show the potential of DROM for improving the performance of
HPC systems. In particular, the workload of two MPI+OpenMP
neuro-simulators are tested, reporting improvement in system met-
rics, such as total run time and average response time, up to 8% and
48%, respectively.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories;

1 INTRODUCTION
In High Performance Computing (HPC) systems the software stack
consists of different layers, from parallel runtime to the workload
manager, each one being responsible for a specific task. Application
developers focusing on the individual performance of their applica-
tions use different programming models. This approach is a must to
hide low-level architectural details from the application developers
and users and extract the maximum performance of new systems.

On the other hand, the objective of the workload manager is to
maximize the efficient utilization of the computing resources. How-
ever, improving the system efficiency is, typically, not well accepted
by users and application developers, since their only objective is

to speed up their application even if some of the resources are left
underutilized. We claim that these two objectives must coexist and
that cooperation between the different stack layers is the way to
reach this goal.

We propose to provide resource managers with more tools that
will give them a dynamic control of resources allocated to the
application and a particular feedback about the utilization of these
resources. In this paper we will extend the DLB [17] [18] library
with a new API designed to be used by the resource managers. This
new API will offer a transversal layer in the HPC software stack to
coordinate the resource manager and the parallel runtime. We call
this API Dynamic Resource Ownership Management (DROM). DROM
has been implemented as a part of DLB distribution and integrated
with well know programming models, i.e. MPI [31], OpenMP [33]
and OmpSs[12] and with the SLURM [8] node manager.

By integrating DROM with above programming models, the
API will work transparently to the application, and thus, to de-
velopers. By integrating the API with SLURM, we enable efficient
co-scheduling and co-allocation of jobs. This means that jobs are
scheduled to share compute nodes by dynamically partitioning
in an effective way the available resources, improving hardware
utilization and job’s response time.

This paper presents the following contributions:
• Definition of DROM, an API that allows cooperation between
any job manager and any programming model.

• Integration of DROM with SLURM node manager for effec-
tive resources distribution in the case of co-allocation.

• Integration of DROM with MPI, OpenMP and OmpSs pro-
gramming models.

• Evaluation of DROMwith real use cases and applications mo-
tivated based on needs in theHumanBrain Project (HBP) [35].

The rest of the paper is organized as follows: Section 2 presents
the related work, Section 3 describes the DROM API, Sections 4
and 5 present the DROM integration with programming models
and SLURM, Section 6 shows the experiments done to validate the
integration and demonstrate the potential of this proposal, and
finally Section 7 presents the conclusions and future work.

2 RELATEDWORK
Malleable Parallel Task Scheduling (MPTS) problem has been ex-
plored for many years. The theoretical research shows its potential

benefits [27] [13] [32]. These works mainly pick the number of
resources that best improves the performance of the parallel task
based on a model of its performance given at schedule time. Feitel-
son [16] classify a malleable job as a job that can adapt to changes
in the number of processors at run time. Deciding on resizing a job
at run time is not an easy task for a scheduler, and it is still not
fully supported by any standard programming model. However,
job scheduling simulations [21] showed the potential benefits of
malleability concerning response time.

Several studies propose malleability based on MPI [31], that
allows, in different ways, to spawn newMPI processes at run time or
use moldability and folding techniques [36]. These approaches are
limited by the inherent program data partition between processes.
Data partition and redistribution is application dependent, so it
needs to be done by application’s developers. Furthermore, data
transfer among nodes has a high impact on performance, making
malleability very costly, especially if using checkpoint and restart
techniques. To limit the amount of extra code, for the users to
have malleable applications the structure of MPI application is
usually constrained, iterative applications using split/merge of MPI
processes are used in [28], master/slave applications are needed
in [11]. Martin et al. [29] try to automatize data redistribution, but
only for vectors and matrices.

Recent work includes an effort on Charm++ [19] programming
model to support malleability. Charm++ allows malleability for ap-
plications by implementing fine-grained threads encapsulated into
Charm++ objects. This solution is not transparent to developers,
i.e., they need to rewrite their applications using this programming
model. Adaptive MPI [20] tries to solve this issue by virtualizing
MPI processes into Charm++ objects, partially supporting MPI stan-
dard. Charm++ lacks a set of API that would allow communicating
with the job scheduler, because malleability features were studied
for load balancing purpose. There was an effort to implement a
Charm++ to Torque [15] communication protocol to enable mal-
leability, but they are not comparable with DROM because DROM
gives generalized APIs that can serve to communicate with any job
scheduler or programming model.

Castain et al. in [9] presented an extensive set of APIs, part of
PMIx project, including job’s expanding and shrinking features. It
is an interesting attempt to create standardized APIs that can be
used by applications to request more resources to the job scheduler.
However, the main difference is that they are designed for evolving
applications, different frommalleable, because changes in resources
is demanded by the application itself, not the resource manager.

Despite this tendency in the research, users still do not have
simple and efficient tools, neither the support from job schedulers
in production HPC machines that would allow them to exploit
malleability. We propose DROM, an API that enables malleability
of applications inside computing nodes, with a negligible overhead
for developers and applications. We integrated DROM APIs with
OpenMP [33] and OmpSs [12] programmingmodels and SLURM [8]
job scheduler. However, DROM is independent of them, and it can be
integrated with any other programming models or job schedulers.

DROM manages computing resources by using CPUSETs, light-
weight structures used at the operating system level, easy and fast
to use and manipulate. A similar approach was presented by [14],
based on dynamically changing the operating system CPUSETs

for MPI processes, but in this case, there was no integration with
the programming model. This approach is equivalent to oversub-
scription of resources, i.e., more than one process running in the
same core, which in general has a negative impact on the applica-
tions’ performance, as demonstrated in [26]. In our integration, we
used OpenMP/OmpSs programming models to adapt the number
of threads to the change in the number of computing resources.
OpenMP and OmpSs use threads instead of processes, easier to cre-
ate and destroy, more efficient, lighter than MPI processes. At the
same time, we support hybrid MPI+OpenMP/OmpSs applications,
which allow the expansion of DROM capabilities to multi-node
environments.

3 DROM: DYNAMIC RESOURCE OWNERSHIP
MANAGEMENT

DROM is a new module included in the DLB library; it offers a new
API to change the computing resources assigned to a process at run
time. This module provides a communication channel between an
administrator process and other processes to adjust the number of
threads accordingly.

In this section we will explain the structure of the DLB library
briefly to understand how DROM is integrated into it, we will
present the proposed DROM API, and we will detail how we have
integrated it with SLURM.

3.1 DLB Framework
DLB is a dynamic library that aims at improving the performance
of individual applications, and at the same time to maximize the
utilization of the computational resources within a node.

The DLB Framework is transversal to the different layers of the
HPC software stack, from the job scheduler to the operating system.
The interaction with the different layers is always done through
standard mechanisms such as PMPI [2], or OMPT [3] explained in
more detail in Section 4. Thus, as a general rule, applications do not
need to be modified or recompiled to be run with DLB as long as
they use a supported programming model (MPI + OpenMP/OmpSs).
Simply by pre-loading the library, these standard mechanisms can
be used to intercept the calls to the programmingmodels andmodify
the number of required resources as needed.

DLB was initially designed for the LendWhen Idle (LeWI)module.
This module acts as a dynamic load balancer for a single application
that suffers from processes’ load imbalance by adjusting the number
of threads per process when needed. However, our claim is that in
the HPC systems there is also a necessity to dynamically balance
the load among multiple jobs’ processes that are executed within
the same reservation. In this way, the system can benefit from
increased utilization, which would not be the case when asking for
separate job submissions. For this reason, we propose the DROM
API and offer an implementation of it within the DLB library.

In Figure 1 we can see the DROMmodule within the DLB Frame-
work. DROM provides an API for external entities, such as a job
scheduler, a resource manager, or a user, to re-assign the resources
used by any application attached to DLB. Then, the DROM module
running on each process will react and modify the computing re-
sources allocated for the application. This procedure depends on
the programming model, but in essence, it implies two steps. First,

2

Operating System

Prog. Model (OpenMP)

Prog.Model (MPI)

Application

Hardware

Job
scheduler Resource

manager User

DROM API

Sh. Mem.

DROM LeWI

Figure 1: DLB Framework

the application will modify the number of active threads running
within the shared memory programming model (OpenMP, OmpSs,
etc.). Lastly, each active thread will be pinned to a specific CPU
to avoid any oversubscription during the coexistence of the many
processes in the node.

DLB uses node’s shared memory to communicate the different
processes, implemented as a common, lock protected, address space
where all processes attached to DLB can read and write. While the
communication can be asynchronous for the sender, the receiver,
by default, will use a polling mechanism based on the interception
interfaces. This mechanism produces a negligible overhead but
relies exclusively on the frequency of the programming model
invocation. Alternatively, DLB also implements an asynchronous
mode for the receiver using a helper thread and a callback system.

This design of the framework allows user, or developer, to add
DLB support to an application with minimal effort. However, there
are some considerations to take into account before running an
application with DLB support, i.e. how the application reacts to an
unintended change of the number of running threads, and whether
other hardware resources, apart from CPUs, can perform when
other applications are co-allocated. The former only depends on the
application implementation, and the latter may depend on several
factors such as total memory consumed, I/O bandwidth, etc.:

• Application’s inherent non-malleability. DLB may change the
number of active threads, ormax_threads in OpenMP nomen-
clature, at any time during the execution. For this reason,
the application should be malleable. We consider an applica-
tion completely malleable when its design allows changing
the number of threads at any time, and its completion is
still valid and successful. This condition requires a thread
based programming model with some level of malleability, al-
though its effect does not need to be immediate. For example,
OpenMP is not able to modify the number of threads until
the next parallel construct, but we consider it acceptable.
An application is not malleable when, at any arbitrary point
of the execution, obtains the number of threads and assumes
it will not change in the future. For instance, a common
practice in OpenMP applications is to allocate some auxiliary
memory based on the current number of threads. At a later
time, inside a parallel region, this memory will be indexed
by the current thread identification number and may cause
different errors depending whether the team size is smaller
or larger than the assumed by the application. The suggested

alternative is to exploit the features that the programming
model already provides. For instance, a private array where
its scope is limited to the parallel construct or a reduction
clause where the programming model manages the auxiliary
memory are both two solutions that solve this issue and keep
the application malleable.

• Hardware is finite. During the job co-allocation, DLB may
reduce the number of active threads of other processes and
may rearrange the pinning of each thread to a new CPU,
but it will not reduce the amount of allocated memory of
any application. Therefore, the total memory capacity and
bandwidth will be shared among applications.

3.2 DROM API for managing the co-allocation
of applications

Processes attached to the DLB system can be managed from an-
other process, referred as administrator process from now on. In
this paper, we consider SLURM as the main candidate for the admin-
istrator process, but the implementation of the interface presented
in this section allows users to program their own administrator
process. In this case, the administrator process always runs as the
same user doing the submission and the co-allocations are always
limited to other applications of the same user.

The administrator process can manage other processes by com-
municating with the DLB system, which mainly consists of a single
shared memory per node. Therefore, if the submission allocates
more than one node, one administrator process must be created for
each node that requires management, and eventual synchronization
need to be implemented within those processes.

The proposed DROM interface is presented below, and its code
is Open Source and available at [6]:

int DROM_Attach(void)
Attach current process to the system as DROM administra-
tor. Once attached, the process is able to query or modify
the process mask of other processes running with DROM
support.

int DROM_Detach(void)
Detach current process from DROM system. If previously
attached, a process must call this function to correctly close
file descriptors and clean data.

int DROM_GetPidList(int *pidlist, int *nelems,

int max_len)
Obtain the list of running processes registered in the DROM
system.

int DROM_GetProcessMask(int pid, dlb_cpu_set_t

mask, dlb_drom_flags_t flags)

int DROM_SetProcessMask(int pid,

const_dlb_cpu_set_t mask, dlb_drom_flags_t

flags)
Getter and Setter of the process mask for a given PID.

int DROM_PreInit(int pid, const_dlb_cpu_set_t

mask, dlb_drom_flags_t flags, char ***

next_environ)

3

Preinitialize a starting process into the DROM system, re-
serving some CPUs or making room in the node by shrinking
other running processes according to mask. The usual work-
flow for this function is to register the current PID, then fork
and exec into the new process keeping next_environ variable
that permits the child process to be able to register using the
parent’s process ID.

int DROM_PostFinalize(int pid, dlb_drom_flags_t

flags)
Finalize a previously preinitialized process. This function
should be called after a preinitialized child process has fin-
ished its execution. The child process may have cleaned the
shared memory if runs a supported programming model but
this is not known from the job scheduler perspective. Is is
always recommended to call this function to clean the data.

Non-standard C types used in this interface are:

• dlb_cpu_set_t is actually a void pointer provided as an
opaque type and it is casted back internally to cpu_set_t.
This data set is a bitset where each bit represents a CPU. It
is defined in the GNU C library [7].

• dlb_drom_flags_t is a custom bitset provided by DLB. This
argument adds some flexibility to the interface by allowing
some options like: whether the function call is synchronous
or asynchronous, whether to steal the CPUs from other pro-
cesses, etc.

4 INTEGRATION OF DROMWITH
PROGRAMMING MODELS

As previously explained, DLB applications need a shared memory
programming model to modify the number of running threads, thus
achieving the resource co-allocation. Currently supported thread
based programming models are OpenMP and OmpSs. MPI intercep-
tion is also supported by DLB to add more synchronization points
between the application and DLB, as well as to gather more infor-
mation about the application structure and improve the resource
scheduling policies.

4.1 Integration with OpenMP
Any OpenMP application can use the DLB library without having to
be recompiled as long as the OpenMP runtime used supports OMPT.
OMPT is a new interface introduced in the OpenMP Technical
Report 4 [3] and it will probably be included in the next OpenMP
5.0 specification. The interface allows external tools to monitor the
execution of an OpenMP program. Even though the interface is
not yet part of the OpenMP standard, several OpenMP runtimes
already include it in their latests versions, such as the proprietary
branch of Intel (2018.2.046) and their open-source branch based on
LLVM’s runtime [1].

If the OpenMP runtime implements this interface, DLB can reg-
ister itself as a monitoring tool when the library is loaded. Then,
DLB can set callbacks that will be automatically invoked for each
parallel construct and implicit task creation allowing to modify the
number of resources accordingly.

4.2 Integration with OmpSs
OmpSs is a task based programming model developed also at BSC,
forerunner of many features accepted in the OpenMP specification.
The OmpSs runtime includes DLB support, and if enabled, any
compiled application can enable the DLB features provided by the
runtime by setting the appropriate option.

4.3 Integration with MPI
HPC applications often request several computing nodes, thus,
shared memory programming models are not enough. A message
passing interface is required for the communication among the dif-
ferent processes of the application and the MPI standard is probably
the most used for that purpose. Being aware of its importance, DLB
implements an interception mechanism by using the MPI standard
profiling interface, PMPI. PMPI allows any profiler, in this case DLB,
to intercept any standard MPI call, and run custom code before and
after the real MPI call.

DLB supports MPI interception and acts as an application pro-
filer but it does not implement malleability at process level, i.e.,
MPI processes are never decreased or increased, nor any program
data is ever moved between processes. For DROM purposes, MPI
interception is only used to poll DLB and check if there are some
pending actions to be taken. If the program runs with a new version
of OpenMP implementing OMPT or with OmpSs, the MPI layer is
completely optional.

4.4 Integration with applications without a
supported programming model

DROM has been designed to be easily used even for applications
that do not run a supported programming model. The DLB library
includes an interface for applications in order to become DROM-
responsive and react to the reallocations performed by the manager
process. Using the DLB interface in the application implies that
it has to be recompiled, but it also offers more flexibility to only
call DLB on those safe points where the application can change the
number of threads if it is not completely malleable.

Listing 1 shows an example of an iterative application manu-
ally modified to support DROM. The effort for developers is min-
imal. First, the application needs to initialize and finalize DLB
correctly when appropriate. Then, just before entering the mal-
leable parallel code, it should poll the DROM module to check if
the resources need to be readjusted and, if needed, perform the
necessary actions. This adjustment needs to be done by the appli-
cation. In case of an OpenMP application, it may include a call to
omp_set_num_threads and, optionally, a rebind of threads if the
runtime is configured to bind them to CPUs.

include " d l b . h "
in t main (in t argc , char ∗ ∗ argv) {

/ ∗ i n i t i a l i z a t i o n ∗ /
DLB_In i t () ;
. . .
/ ∗ main l o o p ∗ /
for (i = 0 ; i <end ; i ++) {

i f (DLB_PollDROM(&ncpus , &mask)
== DLB_SUCESS) {

4

modi fy_num_resources (ncpus , &mask) ;
}
pragma omp p a r a l l e l
. . .

}
/ ∗ F i n a l i z a t i o n ∗ /
DLB_F ina l i z e () ;
. . .
return 0 ;

}

Listing 1: Iterative application manually invoking DROM

5 INTEGRATION OF DROMWITH SLURM
The resources of an HPC machine are managed by a job scheduler
and a resource manager. These two pieces of software allow for fast
and efficient exploitation of the systems’ computing resources. To
execute their applications on the part of the machine, users need
to submit a job in which they specify the type and the amount of
the resources they need, and the period of time during which they
need these resources. All users requests are collected as jobs, and
they are usually managed into a priority queue. One of the most
used job schedulers in research, as well as in production systems is
SLURM. It stands out for its efficiency and scalability, and because
it is open source software.

DROM APIs were integrated into SLURM, to automatize the
placement of jobs’ tasks inside computing nodes, whenever one or
more malleable jobs are scheduled inside the same nodes.

The following implementation only affects jobs placement inside
nodes, i.e. selecting for each node on which CPUs job will run.
Slurmctld, the cluster controller in charge of scheduling jobs and
selecting on which compute nodes they will run, is unchanged, as
the purpose is to give a proof of integration of DROM APIs, not to
present new scheduling policies.

SLURM structure grants portability of the code by the use of
plugins, dynamic libraries that allows system administrators to
avoid recompiling the SLURM core. For this reason the implemen-
tation is enclosed in the SLURM’s task/affinity plugin, in charge of
distributing the resources assigned by slurmctld to the job’s tasks.

Task/affinity is dynamically loaded by slurmd and slurmstepd,
dividing the code flow in two parts. The first is done inside slurmd,
in charge of managing single computing node resources, and thanks
to the plugin, calculating and distributing CPUmasks to tasks of the
scheduled job. The second part is called by slurmstepd, a daemon
that controls correct task launch and execution. At launch point,
the plugin picks the mask assigned by slurmd and actually sets it.

In Figure 2 we give an example that clarifies the actions of DROM
within SLURM. It illustrates the steps performed within DROM-
enabled slurmd and slurmstepd. We present a scenario of two jobs
starting to share a computing node. The job 1, to simplify the figure,
is a one-task job already running in the node 1, while the job 2 is a
two-task job just submitted and given resources on both node 1 and
node 2. Initially, job 1 uses all the resources of node 1 until a part of
them is taken by DROM and given to job 2.

On the left we have job 1 running task 1.1 into node 1, on the
right the start procedure for job 2. Vertical axis represents time for

Figure 2: SLURM job launch procedure for DROMmalleable
applications in two computational nodes.

each involved component, red boxes are modified SLURM parts,
blue boxes are unmodified parts, green boxes are DROM calls.

Starting from the top, node 1’s slurmd executes the submitted
batch script, that uses srun to launch a parallel malleable application,
i.e., job 2. Srun sends requests of launching the tasks to the two
slurmd involved in job 2 allocation. Both slurmds call launch_request
(1) function, that calculates the CPU mask for the starting task.

In this part of the code, since job 1 is running in the node, our
implementation calculates a new mask for both the new and the
running job, where the mask of the running job is a subset of its
original mask. In this case, CPUs distribution is done to maintain
running and new processes balanced in the number of CPUs for
each task, assuming that imbalance in hybrid MPI+OpenMP/OmpSs
applications degrade performance. The algorithm also distributes
CPUs trying to keep applications in separate sockets in order to
improve data locality. In this scenario, for fairness, computational
resources are equally partitioned among running jobs.

After calculating masks for both new and running tasks, slurmd
forks and executes slurmstepd. Slurmstepd calls a pre_launch (2)
function, in charge of setting the mask calculated by slurmd to the
controlled task, and eventually update the other running task 1.1
mask, if necessary. This is done using DROM_PreInit (2.1) function.
At next malleability point, when task 1.1 runs DLB_PollDROM (3), it
gets a new CPU mask from shared memory and applies it, reducing
the number of assigned CPUs per task. In Figure 2 we see the
reduction in CPUs as shrinkage of the blue line. If job 1 runs on
node 2, coordination is implicit in slurmd’s CPUs distribution, that
gives the same placement for both nodes.

When a task ends post_term (4) is invoked, that involves a call
to DROM_PostFinalize (4.1). This function can return CPUs to the
job that is initial owner of the CPUs, i.e., job 1. Of course, this is
only possible in the case this job is still running and keep calling
DLB_PollDROM (3).

When a job completes, slurmd calls release_resources (5), that
redistributes free CPUs to still running tasks. In the case the job
owner of the CPUs, in this case task 1.1, completes before the job
2, CPUs will be acquired by the job 2, that will expand its mask to

5

increase node utilization. This is done by using DROM_GetPidList,
DROM_GetProcessMask and DROM_SetProcessMask (5.1) APIs.

6 EVALUATION OF DROM-ENABLED
SYSTEM’S PERFORMANCE

To evaluate the potential and utility of the DROM API we perform
two types of experiments that follow two realistic use case scenarios,
supported by HBP:

(1) In-Situ Analytics. The workload consists of two jobs: 1) a big
and long job that we will refer to as simulation and 2) small
and short job that we will refer to as analytics. This scenario
corresponds to a use case of HBP in HPC machines, where
a neuro-simulation is running, and a visualizer or a data
analytics program can periodically check partial simulation
results, instead of waiting simulation to complete. To run
an analytics application, within a standard system, the user
would launch a second job asking for resources andwait until
they are available. Using DROM, the analytics would use part
of the resources allocated to the simulation, by temporarily
shrinking its the number of used resources. This permits
running analytics in the same node, avoiding reading and
writing data to disk in case the analytics is able to exchange
data with the simulation in-memory, or data transfer in case
the analytics runs on a local machine.

(2) High-priority job. In the second use case, also part of HBP
use cases, we consider the scenario of two jobs: 1) a long-
running simulation and 2) a new high-priority long-running
job, e.g., an interactive job or urgent simulation, arriving in
the queue. In the absence of available resources, the high-
priority job needs to wait in the job queue, or the already
running job needs to be preempted or oversubscribed, which
would degrade the performance, as previously explained in
Section 2.With other malleability implementations, the simu-
lation would need to shrink in the number of nodes, creating
overhead due to data movement and checkpoint/restart op-
erations. In DROM case, the application can keep executing
on the same number of nodes, but on a reduced number of
resources per node, while the high-priority job is scheduled
to run in the same job allocation.

We use a set of real applications - two neuro-simulation applica-
tions and two synthetic benchmarks:

• NEST [24] is a simulator for spiking neural network models.
It is parallelized with MPI and OpenMP. We have modi-
fied the code of NEST, based on version 2.12.0, to make it
malleable[5]. Additionally, we have added calls to poll_DROM
in the safe pointswhere the number of threads can be changed.

• CoreNeuron is a simulator for modeling neurons and net-
works [23]. It is parallelized with MPI and OpenMP. We have
modified the code to add calls to poll_DROM in safe points
for malleability[4].

• Pils[18] is a synthetic benchmark, doing computation-intensive
operations. It is parallelized with MPI + OmpSs. It can be
configured to run with different numbers of MPI processes
and OpenMP/OmpSs threads. In our experiments, we use it
to simulate a compute bound parallel data analytics.

• STREAM is a benchmark intended to measure sustainable
memory bandwidth[30]. The used dataset size can be ad-
justed, we configured it to run multiple iterations with an
8GB dataset. The application is parallelizedwithMPI +OpenMP.
We used this benchmark to simulate a memory bound ana-
lytics software.

Pils and STREAM benchmarks are used to reproduce the behavior
of in-situ visualizers and analytics used in HBP project, at this point
still at an early stage.

All the experiments are real-machineworkload runs. For that pur-
pose, we used MareNostrum III (MN3) supercomputer [10], based
on Intel SandyBridge processors, with each node containing two
sockets with eight cores per socket and 128 GB of DDR3 mem-
ory. The operating system is a SLES distribution, with Platform
LSF [22] resource manager. NEST and CoreNeuron were compiled
using Intel 2017.1 compilers and OpenMPI libraries version 1.10,
Pils and STREAM were compiled with Mercurium 2.0.0 and Nanos
0.13a. We run the experiments using the original SLURM based
on version 15.08.11 and the modified version that uses DROM to
exploit malleability as described in Section 5. To run the modi-
fied SLURM version, we created an environment where we can
launch the real SLURM as an LSF job on a portion of 3 nodes of
the production-machine, one for controller, two for computing
nodes. This environment allows us to run SLURM as a regular job
scheduler for real-application jobs submitted to it and being freely
configurable by us.

All the reported results are an average of at least 3 runs per-
formed in two MN3 nodes, we observed a maximum coefficient of
variation of 3.4% in run time measurements. We analyzed the use
cases from a system and application perspective, by measuring:

• Total run time: time to complete the workload, calculated as
last job end time minus first job submission time.

• Response time: calculated as a sum of job’s wait time in
scheduler’s queue and job’s execution time.

• Average response time: arithmetic mean of response times
of all the jobs in the workload.

• IPC: number of instructions completed per processor cycle
by a specific thread.

• Cycles per microsecond: number of processor’s cycles per
microsecond dedicated to the specific thread.

We obtained system metrics from SLURM logs and application’s
metrics by tracing the use cases using Extrae [25] and visualizing
traces with Paraver [34]. We compared the baseline and DROM
enabled implementation by measuring run time on two exclusive
MN3 nodes. We didn’t find any visible overhead between them, so
we can compare the two versions in our experiments.

Each of the use cases is evaluated for several different configura-
tions regarding the number of MPI processes and OpenMP threads
per MPI process, as summarized in Table 1. All applications ask for
2 nodes and distribute MPI processes among them. We run NEST
and CoreNeuron with different configurations and we observed
increasing IPC switching from Conf. 1 to Conf. 2. This is due to a
different data access pattern and better data locality. We kept both
configurations to check how the use cases perform. Regarding Pils,
in Conf. 2 and Conf. 3 it does request and run only on a part of node
resources, even if the node is free. Even though it is supposed to be

6

Application Conf. 1:
MPI x OpenMP

Conf. 2:
MPI x OpenMP

Conf. 3:
MPI x OpenMP

NEST 2 x 16 4 x 8 -
CoreNeuron 2 x 16 4 x 8 -

Pils 2 x 16 2 x 1 2 x 4
STREAM 2 x 2 - -

Table 1: Use cases applications configurations.

a small application, we run Pils in Conf. 1 to have a reference case
in which nodes are fully utilized, as a further case for comparison.
Concerning STREAM, we don’t need to change configuration for it
as the application is memory bound and over two CPUs per node
performance keeps constant. We will refer to the different configu-
rations as App-name Conf. x, e.g. NEST Conf. 1 means NEST with 2
MPI processes and 16 OpenMP threads per process.

6.1 Use Case 1: In Situ Analytics

App 1 – process 3

App 1 – process 1

App 1 – process 2

App 2 – process 1

App 1 – process 4
App 2 – process 2

Time

16
 c

or
es

(a) (b) (c) (d)

App 1 – process 1

App 1 – process 2

App 1 – process 3

App 1 – process 4

App 2 – process 2
App 2 – process 1

S
er

ia
l

D
R
O

M

(d) (e)

16
 c

or
es

Simulation
4 MPI x 4 threads

Analytics
2 MPI x 2 threads

Figure 3: In situ analytics example.

In Figure 3 we can see a graphical representation of this use case.
The horizontal axis represents time while the vertical axis compu-
tational resources, i.e., number of cores. At time (a) the simulation
is launched and started in the available resources. At time (b) the
analytics is submitted.

We compare two scenarios, the Serial one considers that the
analytics must wait for the simulation to finish before it can start
at point (d) because no resources are available. Thus the simulation
runs using all the available cores and only when it finishes the
analytic is executed. The second scenario is using DROM to start
analytics immediately at time (b), reducing the number of resources
assigned to the simulation. Once the analytics finishes at point (c)
the simulation gets its resources back.

We evaluated the following two-applications workloads. We
will use the notation simulation application+analytics application
when naming the workloads, i.e. NEST + Pils, NEST + STREAM,
CoreNeuron + Pils, CoreNeuron + STREAM. For this use case, we
evaluate and analyze the total run time, average response time,
individual application’s response time, followed by a discussion on
the differences between Serial and DROM scenarios and the various
configurations.

Figure 4 shows the difference in the workload’s total run time
when running the two versions of NEST in one node with Pils. Y-
axis represents total run time in seconds, while on X-axis we have
the different configurations of the applications involved. For both

0

500

1000

1500

2000

2500

3000

3500

Conf. 1 Conf. 2 Conf. 3 Conf. 1 Conf. 2 Conf. 3

Conf. 1 Conf. 2

T
o

ta
l

ru
n

 t
im

e
 (

s)

Serial

DROM

Pils

NEST

Figure 4: Run time of NEST + Pils workload. Y-axis repre-
sents total run time in seconds, X-axis shows the different
configurations of the applications.

NEST configurations, run time for DROM case is in average 5.9%
better than Serial case for Pils Conf 2 and Conf 3, and comparable
to the reference case Conf. 1. Average overhead of DROM scenario
over Pils Conf. 1 is 0.6%, varying with the analyzer’s configuration.
We observed that this is because of NEST implementation. Since
its data is statically partitioned according to the maximum number
of computational resources during initialization, as explained in
Section 3, when applying malleability to shrink NEST, the tasks
not computed by the removed thread are computed by some of the
remaining resources, creating imbalance, as shown in Figure 5. This
is a limitation of the application and not an overhead introduced
by DROM. In fact, increasing the number of stolen computing
resources, like in the case of Pils Conf. 3, the number of excess tasks
increases, and they are better distributed among the remaining
resources. In this situation, we improve total run time up to 2.5%
with respect to Pils Conf. 1, while for Conf. 2 it can reach -2.6%. A
fully malleable NEST version that doesn’t partition data according
to initial number of threads would improve this result.

Figure 5: Trace showing simulator’s threads onY-axis.When
thread 16 is removed, its data is computed by first 4 threads,
while the others report lower utilization (white idle spaces).

Figure 6 shows single application’s response time. Pils’s response
time, painted in lines pattern, decreases up to 96% due to waiting
time reduced to zero, while its run time is approximately the same.
The cost for this reduction is a small increase in NEST’s response
time, varying from 0% to 4.2%. A 0% increase is due to increasing
IPC when running on a reduced number of threads.

In Figure 7 we can see workload’s total run time and each appli-
cation’s response time for NEST and STREAM use case. In this case
we remove 2 CPUs from the simulation to run a memory intensive
application, gaining in average 1.84% (up to 3.5%) in terms of to-
tal run time. STREAM’s response time decreases up to 92% while

7

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 2 Conf. 3 Conf. 1 Conf. 2 Conf. 3

Conf. 1 Conf. 2

R
e

sp
o

n
se

 t
im

e
 (

s)

NEST - Serial NEST - DROM

Pils - Serial Pils - DROM

Pils

NEST

Figure 6: Individual response time of NEST and Pils in the
NEST + Pils workload.

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 1

Conf. 1 Conf. 2

T
o

ta
l

ru
n

 t
im

e
 (

s)

Serial

DROM

NEST

STREAM

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 1

Conf. 1 Conf. 2

R
e

sp
o

n
se

 t
im

e
 (

s)

Neuron - Serial

Neuron - DROM

Stream - Serial

Stream - DROM

STREAM

NEST

Figure 7: Run time (Left) and Response time (Right) of NEST
+ STREAM workload varying NEST configuration.

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 2 Conf. 1 Conf. 2 Conf. 1 Conf. 2 Conf. 1 Conf. 2

Conf. 1 Conf. 2 Conf. 3 Conf. 1

Pils Stream

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

s)

Serial

DROM

Nest

Figure 8: Average response time of NEST workloads.

NEST’s increases up to 6.7% in the worst case. Total run time is
always better because of benefits of memory bound and a compute
bound applications sharing the nodes.

Figure 8 shows average response time. Gain in DROM case is up
to 48% and never less than 37% with respect to the Serial case.

Figures 9, 10, 11 and 12 show the same set of experiments but
with CoreNeuron neuro-simulator. Results are very similar to NEST
workloads, as also CoreNeuron presents the same data partition
problem. Figure 9 shows improved run time when comparing with
Pils Conf. 2 and Conf. 3, and a maximum overhead of 5% compared
to Pils Conf. 1. Compared to NEST, CoreNeuron shows slightly
worse results when sharing with compute intensive analytics like
Pils, even if less affected by the number of requested resources,
showing 2% of variation versus 5% of NEST. In Figure 11 total run
time is always better then the Serial cases for STREAM workloads
(up to 8%), response time decreases up to 91% while CoreNeuron’s
increase is 4% in the worst case. Compared to NEST, it slightly
performs better when sharing the node with memory intensive

0

500

1000

1500

2000

2500

3000

3500

Conf. 1 Conf. 2 Conf. 3 Conf. 1 Conf. 2 Conf. 3

Conf. 1 Conf. 2

T
o

ta
l

ru
n

 t
im

e
 (

s)

Serial

DROM

Pils

Neuron

Figure 9: Execution time of CoreNeuron + Pils workload.

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 2 Conf. 3 Conf. 1 Conf. 2 Conf. 3

Conf. 1 Conf. 2

R
e

sp
o

n
se

 t
im

e
 (

s)

NEST - Serial NEST - DROM

Pils - Serial Pils - DROM

Pils

Neuron

Figure 10: Individual response time of CoreNeuron and Pils
in the CoreNeuron + Pils workload.

0

500

1000

1500

2000

2500

3000

3500

Conf. 1 Conf. 1

Conf. 1 Conf. 2

T
o

ta
l

ru
n

 t
im

e
 (

s)

Serial

DROM

STREAM

Neuron

0

500

1000

1500

2000

2500

3000

3500

Conf. 1 Conf. 1

Conf. 1 Conf. 2

R
e

sp
o

n
se

 t
im

e
 (

s)

Neuron - Serial

Neuron - DROM

Stream - Serial

Stream - DROM

STREAM

Neuron

Figure 11: Execution time (Left) and Response time (Right)
of CoreNeuron + STREAM workload varying CoreNeuron
configuration.

0

500

1000

1500

2000

2500

3000

Conf. 1 Conf. 2 Conf. 1 Conf. 2 Conf. 1 Conf. 2 Conf. 1 Conf. 2

Conf. 1 Conf. 2 Conf. 3 Conf. 1

Pils Stream

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

s)

Serial

DROM

Neuron

Figure 12: Average response time of CoreNeuronworkloads.

applications like STREAM, with an average run time gain of 5.3%
vs 1.84% for NEST. Average response time in Figure 12 shows an
average gain of 46.5% for DROM scenario with respect to the Serial.

8

6.2 Use Case 2: High-priority job
In this use case we analyze a single workload made up of two jobs,
a long NEST and a long CoreNeuron simulation running on 2 MN3
nodes. Both jobs request Conf. 1 presented in Table 1.

Again, we compare a Serial scenario in which the high-priority
job can only start after the running job ends, and DROM scenario
where the same job starts immediately by freeing some resources
using DROM interface.

Figure 13 presents traces for both scenarios. X-axes represent
time, with same scale to compare total run time, while Y-axes show
application’s threads. At time a) NEST is submitted and runs on the
entire two nodes allocation. At time b) CoreNeuron is submitted. In
the top trace, representing the Serial scenario, CoreNeuron needs to
wait for all the resources to be freed to start, starting at time c). The
bottom trace represents the DROM scenario, in which CoreNeuron
starts at submission time, sharing nodes with NEST. At time d)
NEST ends, freeing half of the available resources, and CoreNeuron
expands its allocation to keep maximum nodes utilization. In the
DROM scenario, as both applications ask for two entire nodes,
SLURMwill apply the implemented automatic resource partition by
reducing both new and running jobs used resources. Equipartition
is applied, giving 16 CPUs per application on a total of 32.

We present total run time and response time to discuss about
system benefits of malleability for this use case, and application
related performance counters, like IPC and cycles per µs, to demon-
strate applications are not interfering each other when DROM is
used for malleability.

3300

0

1500

a) b) c) d)

Figure 13: Traces showing cycles per µs of use case 2. Serial
scenario is presented on the top, DROM on the bottom.

Looking at the total workload duration in Figure 13, in the case
of DROM, better resource utilization leads to a total run time im-
provement of the 2.5%. The same figure shows the cycles per µs
using colors. Showing the same color for both scenarios means
there is no difference between Serial and DROM scenarios and
constant color during run time shows that there is no variation
in this metric when applying malleability to expand and shrink
applications. Green color at beginning of CoreNeuron simulator
shows lower cycles in memory intensive initialization phase. In the
Serial scenario, during initialization, all computational resources
are underutilized, while in DROM case, NEST keep running, in-
creasing utilization and contributing to reduce total workload run
time.

Figure 14 shows the number of instruction per cycle for both
configuration of the use case 2. Figures are grouped by application
to be easily comparable. X-axes represent IPC in increasing order,
Y-axes application’s threads, blue dots show more frequent IPC and

NEST Serial

NEST DROM CoreNeuron DROM

CoreNeuron Serial

Figure 14: Histogram of instruction per cycle for CoreNeu-
ron and NEST runing in serial and with DROM.

Figure 15: Average response time for use case 2 workload.
DROM scenario improves response time by 10%with respect
to the Serial scenario.

represent the main information of the histograms. They demon-
strate that Serial and DROM scenario are comparable in terms of
IPC. Regarding NEST, we distinguish some noise in the Serial sce-
nario, and two color variants for the most frequent IPC for DROM.
This is due to the fact that threads corresponding to the lighter color
are removed to accommodate CoreNeuron at time (b) of Figure 13,
distributing more computation on the darker part of the graph. For
CoreNeuron, IPC in Serial scenario is constant but for DROM, we
can distinguish two blue zones, in correspondence to the threads
in which application starts, reporting slightly higher IPC. This is
due to higher parallel efficiency when running on less number of
OpenMP threads per MPI rank, improving total run time.

Finally, Figure 15 presents average response time for this use
case. Response time improves by 10% with respect to the Serial
scenario due to gain in run time and because the high-priority
job can start earlier, improving at the same time user experience
when the job is interactive or giving earlier partial results when a
simulation is able to start earlier.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an interface, named DROM, that allows
exploiting malleability by creating communication between two, at
the moment, unconnected parts of HPC software stack that should
work in a more connected and coordinated way. The presented
API permits to change the computational resources allocated to a
running application efficiently, without any overhead.

We implemented the proposed APIs within the DLB framework,
designing the interface to be easily integrated into any program-
ming model or directly into the application. We integrated them
with different and widely used programming models, such as MPI
and OpenMP. Additionally, we presented an integration of the API

9

with SLURM node manager, to achieve automatic distribution and
placement of co-scheduled jobs inside nodes. We presented two
use cases as a proof of concept, and we analyzed results from the
workload point of view and application point of view. Our results
show up to 48% improvement in average response time, and up to
8% in total run time, by comparing to the serial case.

With this study, we open future work in two directions. On
one side we want to expand the potential of DROM, with new
functionalities, like the collection of useful data from applications
at run time. The collected information can be consulted by an
external to get info about applications performance and send them
to the job scheduler to be taken into account for further scheduling
decisions. On the other side, we want to tight the communication
between the different layers of the HPC software stack, i.e., by
developing DROM-aware scheduling and resource management
policies. The simplicity of DROM APIs gives more freedom to the
scheduler, that can implement malleable scheduling techniques,
for instance by choosing one or multiple specific jobs to share
computational nodes, or at resource management level, by choosing
as "victim" nodes the ones with lower utilization. Combined with
a job scheduler/resource manager, DROM can be used in many
different ways, including implementing new scheduling policies
based on malleability, e.g. policies based on co-scheduling, or as
alternative to jobs preemption.

Acknowledgments. This work is partially supported by the Span-
ish Government through Programa Severo Ochoa (SEV-2015-0493),
by the SpanishMinistry of Science and Technology through TIN2015-
65316-P project, by the Generalitat de Catalunya (contract 2017-
SGR-1414) and from the European Union’s Horizon 2020 under
grant agreement No 785907 (HBP SGA2).

REFERENCES
[1] 2016. Intel©OpenMP Runtime Library. (2016). https://www.openmprtl.org/
[2] 2016. PMPI profiling interface. (2016). https://www.open-mpi.org/faq/?category=

perftools
[3] 2016. TR4: OpenMP Version 5.0 Preview 1. (2016). http://www.openmp.org/

wp-content/uploads/openmp-tr4.pdf
[4] 2017. Malleable CoreNeuron source code. (2017). https://github.com/BlueBrain/

CoreNeuron/tree/hbp_dlb
[5] 2017. Malleable NEST source code. (2017). https://github.com/mggasulla/

nest-simulator/tree/malleability
[6] 2018. DLB-DROM source code. (2018). https://github.com/bsc-pm/dlb/
[7] 2018. The GNU C library: CPU Affinity. (2018). https://www.gnu.org/software/

libc/manual/html_node/CPU-Affinity.html
[8] Yoo A. B., Jette M. A., and Grondona M. 2003. SLURM: Simple Linux Utility for

Resource Management. In Job Scheduling Strategies for Parallel Processing. 44–60.
[9] R. H. Castain, D. Solt, J. Hursey, and A. Bouteiller. 2017. PMIx: Process Manage-

ment for Exascale Environments. In Proceedings of the 24th European MPI Users’
Group Meeting (EuroMPI ’17). ACM, New York, NY, USA.

[10] Barcelona Supercomputing Center. 2014. Marenostrum 3. (2014). https://www.
bsc.es/marenostrum/marenostrum/mn3

[11] I. Comprés, A. Mo-Hellenbrand, M. Gerndt, and H. Bungartz. 2016. Infrastructure
and API Extensions for Elastic Execution of MPI Applications. In Proceedings of
the 23rd European MPI Users’ Group Meeting (EuroMPI 2016). 82–97.

[12] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J.
Planas. 2011. Ompss: a Proposal for Programming Heterogeneous Multi-Core
Architectures. Parallel Processing Letters 21 (2011).

[13] J. Turek et al. 1994. Scheduling Parallelizable Tasks toMinimize Average Response
Time. In Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms
and Architectures. 200–209.

[14] M. Cera et al. 2010. Supporting Malleability in Parallel Architectures with Dy-
namic CPUSETs Mapping and Dynamic MPI. In Proceedings of the 11th Interna-
tional Conference on Distributed Computing and Networking. 242–257.

[15] S. Prabhakaran et al. 2015. A Batch System with Efficient Adaptive Scheduling
for Malleable and Evolving Applications. In 2015 IEEE International Parallel and

Distributed Processing Symposium. 429–438.
[16] Dror G. Feitelson and Larry Rudolph. 1996. Toward convergence in job schedulers

for parallel supercomputers. In Job Scheduling Strategies for Parallel Processing.
Berlin, Heidelberg, 1–26.

[17] M. Garcia, J. Corbalan, and J. Labarta. 2009. LeWI: A Runtime BalancingAlgorithm
for Nested Parallelism. In International Conference on Parallel Processing.

[18] M. Garcia, J. Labarta, and J. Corbalan. 2014. Hints to improve automatic load
balancing with LeWI for hybrid applications. J. Parallel and Distrib. Comput.
(2014).

[19] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V. Kale. 2014. To-
wards Realizing the Potential of Malleable Parallel Jobs. In Proceedings of the IEEE
International Conference on High Performance Computing (HiPC ’14). Goa, India.

[20] C. Huang, O. Lawlor, and L. V. Kalé. 2003. Adaptive MPI. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Computing.

[21] J. Hungershofer. 2004. On the combined scheduling of malleable and rigid jobs.
In 16th Symposium on Computer Architecture and High Performance Computing.

[22] IBM. 2014. Platform LSF. (2014). www.ibm.com/support/knowledgecenter/en/
SSETD4_9.1.2/lsf_welcome.html

[23] P. Kumbhar and M. Hines. 2016. CoreNeuron Neuronal Network Simulator
Optimization Opportunities and Early Experience. InGPU Technology Conference.

[24] Kunkel, S. et. al. 2017. NEST 2.12.0. (2017). https://doi.org/10.5281/zenodo.259534
[25] G. Llort, H. Servat, J. González, J. Giménez, and J. Labarta. 2013. On the usefulness

of object tracking techniques in performance analysis. In 2013 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[26] V. Lopez, A. Jokanovic, M. D’Amico, M. Garcia, R. Sirvent, and J. Corbalan.
2017. DJSB: Dynamic Job Scheduling Benchmark. In Job Scheduling Strategies
for Parallel Processing: 21st International Workshop, JSSPP 2017, Orlando, FL, USA,
June 2, 2017, Revised Selected Papers.

[27] Walter Ludwig and Prasoon Tiwari. 1994. SchedulingMalleable andNonmalleable
Parallel Tasks.. In SODA, Vol. 94. 167–176.

[28] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela. 2007. Dynamic
Malleability in Iterative MPI Applications. In Seventh IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid ’07). 591–598.

[29] Gonzalo Martín, David E. Singh, Maria-Cristina Marinescu, and Jesús Carretero.
2015. Enhancing the Performance of Malleable MPI Applications by Using
Performance-aware Dynamic Reconfiguration. Parallel Comput. 46 (July 2015).

[30] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. Technical Committee on Computer Architecture
(1995).

[31] Message Passing Interface Forum. 2015. MPI Specifications 3.1, http://mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf. (2015).

[32] G. Mounie, C. Rapine, and D. Trystram. 1999. Efficient Approximation Algorithms
for Scheduling Malleable Tasks. In Proceedings of the Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’99). 23–32.

[33] OpenMP. 27/4/2018. OpenMP 4.5 Specifications, http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf. (27/4/2018).

[34] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. 1995. Paraver: A tool
to visualize and analyze parallel code. In Proceedings of WoTUG-18: transputer
and occam developments, Vol. 44. IOS Press, 17–31.

[35] Human Brain Project. 2017. https://www.humanbrainproject.eu/en/. (2017).
[36] G. Utrera, J. Corbalan, and J. Labarta. 2004. Implementing Malleability on MPI

Jobs. In Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques.

10

https://www.openmprtl.org/
https://www.open-mpi.org/faq/?category=perftools
https://www.open-mpi.org/faq/?category=perftools
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
https://github.com/BlueBrain/CoreNeuron/tree/hbp_dlb
https://github.com/BlueBrain/CoreNeuron/tree/hbp_dlb
https://github.com/mggasulla/nest-simulator/tree/malleability
https://github.com/mggasulla/nest-simulator/tree/malleability
https://github.com/bsc-pm/dlb/
https://www.gnu.org/software/libc/manual/html_node/CPU-Affinity.html
https://www.gnu.org/software/libc/manual/html_node/CPU-Affinity.html
https://www.bsc.es/marenostrum/marenostrum/mn3
https://www.bsc.es/marenostrum/marenostrum/mn3
www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_welcome.html
www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_welcome.html
https://doi.org/10.5281/zenodo.259534

	Abstract
	1 Introduction
	2 Related Work
	3 DROM: Dynamic Resource Ownership Management
	3.1 DLB Framework
	3.2 DROM API for managing the co-allocation of applications

	4 Integration of DROM with Programming Models
	4.1 Integration with OpenMP
	4.2 Integration with OmpSs
	4.3 Integration with MPI
	4.4 Integration with applications without a supported programming model

	5 Integration of DROM with SLURM
	6 Evaluation of DROM-enabled system's performance
	6.1 Use Case 1: In Situ Analytics
	6.2 Use Case 2: High-priority job

	7 Conclusions and Future Work
	References

