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Abstract

It is well known that load imbalance is a major source of efficiency loss
in HPC (High Performance Computing) environments. The load imbalance
problem has very different sources, from static ones related to the data dis-
tribution to very dynamic ones, for example, the noise of the system.

In this thesis, we present DLB: Dynamic Load Balancing library. DLB
is a framework to improve the efficient use of the computational resources
of a computational node. With DLB we offer a dynamic solution to load
imbalance problems. DLB is applied at runtime and does not need previous
information to solve load imbalance problems, for this reason, it can deal
with load imbalances coming from any source.

The DLB framework includes a novel load balancing algorithm: LeWI
(Lend When Idle). The main idea of LeWI is to use the computational
resources assigned to a process or thread when it is idle, to speed up another
process running on the same node that it is still doing computation. We will
see how this idea although being quite simple it is powerful and flexible to
obtain an efficient use of resources close to the ideal one.
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Chapter1
Introduction

High performance computing (HPC) environments are always evolving.
Nowadays the hardware is moving towards big clusters with multicores and
manycore nodes. To achieve an efficient use of these massive new architec-
tures, we can find multiple software layers that go from the hardware level
up to the application level.

In parallel computing, the loss of efficiency is an issue that concerns both
system administrators and parallel programmers. For system administrators
efficiency is to obtain a high throughput1 from the computational resources.
For parallel programmers, efficiency is to obtain the maximum performance
from their application.

It is well known that one of the primary sources of efficiency loss in
parallel systems is load imbalance. Load imbalance implies that while the
most loaded processes are computing, the less loaded ones are waiting and
wasting computational resources, therefore, losing efficiency.

The growth in the number of computing units that clusters experienced
in the last years has helped improving applications performance but has
raised new problems or worsened old ones. One of the old problems that has
deteriorated with the increase of computational resources is load imbalance.

1In this context, we can define throughput as the number of jobs finished per unit of
time. Throughput = FinishedJobs

ElapsedTime
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Chapter 1. Introduction

On the one hand it is hard to distribute the work evenly when partitioning
across more resources. On the other hand, the efficiency loss related to load
imbalance increases dramatically with the number of computational resources
used.

If we are running with 4 processes and one of them is one second slower
than the others, we will have 3 CPUs idle for 1 second, accounting for 3
CPU time seconds lost. But in the current HPC environments it is common
to run into thousands and tens of thousands of CPUs. If we have the same
problem when running with 1000 processes, we will be wasting 1000 seconds
of computational power. The same problem when running in 10.000 CPUs
would be wasting 2,8 hours of computational power.

We can define Efficiency as the percentage of time that the computational
resources are doing useful work from the total CPU time consumed by the
application. In this thesis we will use the following formula to compute the
efficiency:

Efficiency =
useful cpu time

elapsed time ∗ num CPUS
∗ 100
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Figure 1.1: Efficiency for different loads and number of processes

In Figure 1.1 we can see how the efficiency is affected when running
with different numbers of processes and different loads2. This makes load
imbalance a crucial issue to obtain an efficient use of the HPC environments.

2This is a synthetic experiment assuming ideal conditions. I.e., the only impact on the
efficiency is the load imbalance. In the X axis is represented different distributions of loads
among processes. To simplify the first number is the load of the most loaded process and
the second number is the load of the remaining processes. E.g., for 4 processes and a load
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Load imbalance is a problem as old as parallel programming, and has
been targeted from very different approaches but has never disappeared. In
some cases, no solution has been found yet, and in others, the evolution of
the system introduced new issues, for example, load imbalance caused by
heterogeneity of resources.

Load imbalance appears when one or more processes of an application
finish their computation faster than the others and a synchronization point
is reached. In this situation, the faster processes will wait for the others.
While the processes are waiting their computational resources can be idle.
We will use the following formula to measure the load balance:

LoadBalance =

∑NumProcs
n=1 tn

maxNumProcs
n=1 (tn) ∗NumProcs

=
AverageNumProcs

n=1 (tn)

maxNumProcs
n=1 (tn)

Where tn is the computation time of process n. This will give a load
balance value between 0 and 1; a value of 1 means a perfect load balance of
the computation (Average(tn) == Max(tn)).

t1 = 3s
t2 = 1,5s

Used CPU = 3 * 2 = 6

Useful = 3 + 1,5 = 4,5

LoadBalance =  = 0,75

Figure 1.2: Example of load balance measured

Load imbalance can appear for very different reasons. We can divide the
sources of load imbalance in three main categories: inherent to the algorithm,
system functionality or system variability.

Algorithm Load imbalance can be originated in the algorithm, in some
cases because of data partition, in others because of the computational load.
A computational imbalance coming from the algorithm can appear when
using sparse matrices, for example, because the number of useful values and
zeros may be distributed among processes unevenly.

Mesh partitioning software (i.e. Metis [1]) is used to try to solve load im-
balance coming from data partitioning. In most cases, this software needs

distribution of “56-44“, the first process will have a load of 54, the second 44, the third 44
and the fourth 44.

3



Chapter 1. Introduction

Figure 1.3: Taxonomy of sources of load imbalance

a heuristic to load balance the partition. This heuristic must be provided by
the application. But, obtaining this heuristic is not always trivial (as we will
see in chapter 9).

Furthermore, sometimes a data partition can be well load balanced for
some parts of the application, but imbalanced for other ones. For example,
when working with graphs, if the heuristic used to compute the partitions
is based on the computational load of edges, this partition may not be well
balanced when doing computation over the nodes.

Even if the computational work was divided evenly at the start point,
load balance could change during the execution. A typical example would
be the particles moving through a system and across partitions; in this case,
the computational load is associated with the particles and these are moving
from one partition to another. Another typical situation where we can find
a dynamic data load imbalance is when using adaptive mesh refinement
(AMR) [2]. With these techniques, the accuracy of some regions is increased
by increasing the number of grid points and consequently the amount of data
to compute for those regions.

System Functionality Differences in functionality can also introduce load
imbalance. For example, a different IPC (Instructions per Cycle) or number
of misses in any of the cache levels can end up producing a load imbalance
between different processes. These kind of situations are difficult to detect,
and only after a deep analysis of performance we can try to solve the imbal-

4



ance by changing the code to improve the data access, locality, serialization
over resources or similar problems. Furthermore, we can address the problem
for a particular architecture and input of the application, but the issue can
reappear anytime that we change the environment or the input set.

Another kind of functionalities that might worsen the load balancing can
be related to resiliency, coming from differences in the checkpointing, fail-
ures or restarting. Even technology designed to speed up applications, like
for example, dynamic overclocking (E.g, Intel turbo boost) can introduce
differences in the execution times of the processes and produce a load imbal-
ance.

System Variability Finally, variability is a major source of load imbal-
ance [3]. Causes for variability at the software level can go from the noise
introduced by the operating system to thread migration among cores. But
also hardware can present variability that affects load imbalance like con-
tention in the network or differences in the manufacturing of the hardware.
These load imbalances can not be predicted nor solved by a static approach.
Only a dynamic mechanism can try to solve or minimize the impact of vari-
ability in the performance.

HPC application developers have been aware of this problem and have
been trying to solve it for a long time. Their straightforward solution is
to tune parallel codes by hand. In some cases, programmers include load-
balancing code in their applications. In others, they need to deduce heuristics
that can predict the load of the input to obtain a good data distribution. Or
even redistribute the data during the execution (at the high cost of moving
data around).

This is always an iterative process as depicted in Figure 1.4 of analyzing
the performance of the application, modifying it to improve its performance
and run again until an acceptable performance is obtained.

These practices usually result in codes optimized for specific architectures,
execution conditions or inputs. They require devoting many economic and
human resources to tune specific parallel codes. Furthermore, usually, these
solutions do not consider or are not able to solve other factors that can
introduce load imbalance such as OS noise, resource sharing, or dynamic
overclocking. And even worst, the rapidly changing systems and architectures
can easily deprecate these optimizations.

5



Chapter 1. Introduction

Figure 1.4: Typical HPC application life cycle

We have seen that traditionally the approach to solve the load imbalance
problem has been to anticipate it. Either by estimating the load with heuris-
tics or measuring it previously to the execution. But as we have seen the
sources of load imbalance can be very dynamic and trying to fight it is a lost
battle.

If we cannot anticipate it, nor fight it, then the only solution we have is
to adapt to it. Our proposal is to adjust the execution dynamically to obtain
a better use of the resources despite the load imbalance.

In this thesis, we will try to find a solution to the load imbalance problem
that is dynamic enough to solve all the types of imbalance and granularities.
To achieve this instead of relying on data load balancing, we will use the
approach of computational load balancing.

Data-load balancing consists in redistributing the data to achieve a
good load balance. It is the most used approach in current solutions (re-
partitioning the mesh, e.g. PAMPA [4] or redistributing the data, e.g. Adap-
tive MPI [5]). Data movements and mesh partitioning is expensive. There-
fore, the grain of the load imbalance that can be solved with this approaches
is coarse.

6



Computational-load balancing, on the other hand, consists in giving more
resources to the processes that present a higher load to balance the overall
execution. This approach allows a more fine-grained load balancing because
the ”movement“ of computational resources is faster than data migration.

The load balancing based in redistributing the computational power relies
on the malleability3. We will see that malleability is crucial at all the levels,
the application, the programming model, and the system.

The solution we propose is a library that will adapt the application at
runtime; we call it Dynamic Load Balancing (DLB) library. DLB will manage
the use of resources inside a computational node to solve the load imbalance
of an application. It will do this by changing the number of threads of the
different processes transparently to the developer and the application. As the
solution is applied at runtime, DLB can solve load imbalance coming from
any source of the previously listed.

In this thesis, we will present a novel load balancing algorithm imple-
mented in DLB called: LeWI (Lend When Idle). LeWI is based on the idea
of lending the computational resources to another process on the same node
when not using them.

Figure 1.5: HPC software
stack and DLB

As we said, the software stack in HPC en-
vironments is formed by several software layers.
In Figure 1.5 we can see a typical software stack
in HPC systems. All these layers share an aim:
to obtain an efficient use of the computational
resources, but, in general, they do not work to-
gether or coordinate.

DLB will work transversal to the other soft-
ware layers and collaborate or coordinate with
them to improve the efficient use of resources.
As we will see, the level of integration with each
layer is different. Some of them are completely
transparent, and almost no integration was nec-
essary, in other ones we have done a deep inte-

gration, and in other cases it is left as future work.

We will try to be as transparent as possible to the application, but we
will also evaluate the trade-off between being completely transparent and the

3Malleability: the state of being malleable, or capable of being shaped.
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Chapter 1. Introduction

performance. To this end, DLB offers an API that can be used to give hints
to the load balancing mechanism to improve the performance.

DLB will need two levels of parallelism, the inner level of parallelism will
be used to improve the resource utilization of the outer level of parallelism. A
typical HPC application will have parallelism at the distributed memory level
(across nodes) and the shared memory level (inside a node). DLB also sup-
ports a single level of parallelism and multiple applications (the application
would be the second level of parallelism necessary).

At the distributed memory level we will focus on the MPI programming
model and improve its load balance. Load imbalance is especially dramatic in
MPI applications because data is not easily redistributed or moved between
processes. Furthermore, MPI is the most used programming model in HPC
applications. Nevertheless, DLB has been designed and is prepared to be eas-
ily extended to support other programming models. The interaction between
DLB and MPI will be completely transparent to the application, the user,
and the programming model, thanks to the PMPI interception mechanism
provided by MPI.

The current version of DLB includes support for OpenMP and OmpSs
as the second level of parallelism. DLB coordination with OpenMP is based
on their standard public API. An integration between DLB and the OmpSs
runtime has been implemented. This integration has shown the potential of
a collaboration between the different layers. With the current structure of
DLB and the experience of the OmpSs integration adding support for other
programming models at various levels of integration should be trivial.

As a future work we plan to offer an API for the job scheduler that gives
information about the performance of the application during the execution
and allows to change the assigned resources to each process based on this
information. This functionality will be offered by two new modules: Stats
and DROM.

With the solution we propose we want to avoid the iterative process of
analyzing and modifying the application to obtain a good performance, as
shown in Figure 1.6. To use DLB, we do not need to change the application
nor analyze its performance previously. The DLB library can be loaded dy-
namically, can be used linked with the application or through the integration
with OmpSs.

8
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Figure 1.6: HPC application life cycle with DLB

1.1 Contributions and Publications

The main contributions of this thesis and the publications that resulted from
them are the following:

• The DLB library as a framework to manage the computational re-
sources within a node. It is ready to be extended with other load
balancing algorithms and support for other programming models.

• A novel load balancing algorithm LeWI [6] [7].

• The integration of DLB with a parallel runtime (OmpSs). We have
shown the potential of this kind of collaborations between runtimes.
We have also identified the key points of coordination and defined an
API for this integration.

• Study of factors that affect the load balancing mechanism based on
DLB and LeWI. We have obtained conclusions that can be used by
application developers or parallel runtime designers to improve the effi-
ciency of applications when using DLB and LeWI. These factors include
the degree of malleability of the programming model and the applica-
tion, the distribution of MPI processes among nodes and the binding
of threads to cores [8] [9].

• Extensive evaluation of DLB and LeWI in a CFD (Computational Fluid
Dynamics) code: Alya. We have demonstrated the potential of DLB
and LeWI at solving different kind of load balancing issues common in
this type of applications. We confirm that DLB and LeWI are ready

9



Chapter 1. Introduction

to be used in production runs of real applications and scale up to thou-
sands of cores [10] [11].

1.2 Organization of the document

The remaining of this document is organized as follows: In Chapter 2, we will
comment the technical background in which this thesis has been developed,
this includes explaining the programming models used and their key features
and describing the software and the hardware used to run the experiments.

In Chapter 3, we will explain the main characteristics of the different
applications and benchmarks that have been utilized for the performance
evaluation. The following chapter contains a summary of the most relevant
related work to our research topic.

In chapter 5 we will explain the DLB library in detail, including all the
technical information, design decisions, and its main features. The two algo-
rithms implemented within DLB will be explained and compared in Chap-
ter 6. DWB (Dynamic Weight Balancing) [12] a load balancing algorithm
from a previous work and LeWI the novel algorithm presented in this thesis.

Chapter 7 contains an extensive study of different factors that can affect
the load balancing mechanism. The malleability of the programming model
and the application, the distribution of MPI processes and the binding of
threads to cores.

The details of the integration of DLB with a parallel runtime (OmpSs)
and its performance evaluation will be explained in Chapter 8.

In Chapter 9, we will see the results of applying DLB and LeWI to a
production CFD code: Alya. We will analyze in detail the performance
related to load imbalance in different parts of the code and how DLB can
improve it. And we will see how DLB can be used to solve different issues
related to resource usage in this kind of applications.

Finally, in the last chapter, we will summarize the key findings achieved
with this thesis and research lines that has been opened for future work. At
the end, we can find two appendixes containing a thorough study of limits of
the two algorithms included in DLB (DWB and LeWI).

10



Chapter2
Technical Background

In this chapter, we explain the environment in which this thesis have been
developed. First we describe the parallel programming models used and
their key features. Then we depict the execution environments where we
have executed the experiments and developed our project. Finally, we will
briefly describe the software used for development and support.

2.1 Programming Models

2.1.1 MPI: Message Passing Interface

MPI [13] stands for Message Passing Interface and is a communication API
that allows the development of parallel distributed applications. MPI belongs
to the family of SPMD (Single Program Multiple Data) parallel programming
models and is tailored for distributed systems. It provides an interface to the
processes to easily communicate and synchronize.

MPI has become the standard in distributed parallel programming, and
it is broadly used for HPC applications.

The MPI model does not allow a progressive parallelization of the appli-
cation.

In MPI applications, all data is private to each process. The data that
need to be shared among processes must be sent/received explicitly with MPI

11



Chapter 2. Technical Background

calls. Since data movements are specified in the code, it is not easy to adapt
the application behavior to the different input data or architectures.

Furthermore, the programmer should have an excellent knowledge of the
application because the data is distributed among the different processes and
each one will compute over its data.

Current implementations of the MPI runtime include optimizations to run
efficiently on SMP nodes. But some studies show that the use of a second
level of parallelism exploited with programming models oriented to shared
memory environments is a better approach.

Rabenseifner et al. [14] discuss that a hybrid parallelization model of
MPI+OpenMP has several advantages such as, improve the load balancing,
reduce memory consumption or more efficient memory accesses. But they
also conclude that the better approach depends on the application, input
and hardware architecture.

Smith et al. [15] demonstrate that hybrid programming is not always the
most efficient mechanism for SMP systems for all codes. However, in some
situations, an MPI+OpenMP model can be beneficial. For example, if the
MPI parallelization suffers from poor scaling with MPI processes due to load
imbalance or too fine grain problem size, memory limitations due to the use
of a replicated data strategy, or a restriction on the number of MPI processes
combinations. Besides, if the system has a poorly optimized or limited scaling
MPI implementation, then a hybrid code may increase the code performance.

The reality in HPC environments is that most applications are imple-
mented using MPI. These codes must be optimized or present performance
issues. But porting them to new programming models to solve them is not
viable. On the one hand, because these codes contain hundreds of thousands
of lines and changing MPI would mean a whole refactoring of the code. Not
only the amount of human resources to do this is prohibitive, but, in some
cases they do not have the knowledge of all the parts of the application. On
the other hand, moving towards experimental models or new programming
paradigms is too delicate to be adopted in production codes.

2.1.2 OpenMP: Open Multi-Processing

OpenMP (Open Multi-Processing) [16] is the most widely used parallel pro-
gramming model for shared memory in HPC applications. It also follows the

12
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model of SPMD, but in this case, the programmers should define the loops
and regions of the code that can be executed in parallel.

The interface that OpenMP offers is formed by some preprocessor direc-
tives. If OpenMP is not activated the compiler will detect these directives
as comments and they will not have any effect. Therefore, the same source
code can be used as sequential code or parallel OpenMP, depending on the
compilation flags.

The preprocessor directives mark the parts of the code that can be ex-
ecuted in parallel and can include some additional clauses concerning data
sharing specification.

The OpenMP runtime is in charge of spawning the threads at the begin-
ning of the parallel section and join them back into the master thread at the
end.

With OpenMP, the parallelization of applications can follow a bottom-up
approach, because it allows a progressive parallelization of the code. To par-
allelize with OpenMP it is not needed a broad knowledge of the application to
parallelize it. And neither is required a vast knowledge of the programming
model, as most options can be left with the default values.

However, if we target to achieve the best performance a reasonable knowl-
edge of the application and the programming model is needed to tune all the
options, the schedule, the number of threads, etc..

A significant advantage of OpenMP is its malleability. The number of
OpenMP threads running can be changed at runtime, opposed to MPI where
the number of MPI processes is fixed during the whole execution of the
application. In OpenMP the number of threads can be changed only outside
a parallel region, for this reason its malleability is limited to the parallel
regions of the code.

2.1.3 SmpSs: SMPSuperScalar

SmpSs (SMPSuperScalar) [17] is a task-based programming model for shared
memory systems. It was first released in 2007.

SmpSs is also based in preprocessor directives. The programmer must
mark in the code the functions that can run in parallel as tasks, and identify
their inputs and outputs. With this information, the runtime will detect the
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dependencies between tasks and schedule them in the different threads to
maximize the performance.

SmpSs presents higher malleability than OpenMP, as the number of
threads can be changed at any point during the execution of the applica-
tion. The only limitation is that a thread cannot leave a task unfinished.

SmpSs hybridizes nicely with MPI [18] offering a powerful approach for
HPC applications.

Having access to the source code was an advantage because this provided
us the opportunity to integrate some of the DLB functionalities into the
runtime and have a better control of the threads.

SmpSs is the predecessor of OmpSs, once all its features were included
in the OmpSs runtime the maintenance of SmpSs was discontinued. For this
reason in the current version of DLB, the SmpSs support is not maintained.
Nevertheless some of the early results of this thesis where obtained using
SmpSs.

2.1.4 OmpSs: OpenMP SuperScalar

OmpSs (OpenMP SuperScalar) [19] [20] is a programming model that in-
tegrates features from SmpSs and OpenMP. It is built on top of the Mer-
curium compiler [21] and the Nanos++ runtime system [22]. It supports
asynchronous task parallelism and OpenMP parallel loops.

OmpSs is based on tasks and dependences. Tasks are the elementary
unit of work which represents a particular instance of an executable code.
Dependences let the user annotate the data flow of the program. With this
information the runtime determines if the parallel execution of two tasks may
cause data races and avoid them.

The OmpSs compiler can also process OpenMP parallel loops constructs
and transform them into tasks. This allows us to easily execute already paral-
lelized applications with OpenMP with the OmpSs model without modifying
them and at the same time obtaining the benefit of the higher malleability
of OmpSs.

The Nanos++ runtime can support OmpSs but also has modules to sup-
port other programming models such as OpenMP or Chapel [23]. Nanos++
and OmpSs has been used as a forerunner for OpenMP and several features
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originally implemented and tested in OmpSs are currently in the OpenMP
standard, such as, task dependences or priorities.

2.1.5 Programming Models Summary

We will now summarize the characteristics that are more relevant for this
thesis of the programming models explained.

To parallelize an application with MPI we need a good knowledge of
the application, its data accesses and the MPI programming model. When
parallelizing with OpenMP to obtain a first working version is relatively easy,
just some knowledge of the programming model and the code is necessary.
But when trying to obtain a good performance a more broad knowledge of
the programming model and the application is necessary, the same applies
to OmpSs and SmpSs.

MPI does not allow an incremental parallelization while with OpenMP,
OmpSs and SmpSs it is possible to parallelize progressively.

We have seen that MPI is not malleable. On the other hand, OpenMP
can be malleable (if the programmer avoids some practices, like using the
number of the thread to index arrays). But OpenMP still presents some
limitations in the malleability, because the number of threads can only be
changed outside a parallel region. OmpSs and SmpSs does not have this
limitation and are full malleable, with the only restriction of not leaving a
task unfinished.

2.1.6 Hybrid Programming Models

In current HPC systems the hardware design is hierarchical, nodes that con-
tain several sockets with multiple cores, connected via a network infrastruc-
ture. To exploit the potential of these hierarchical systems using the parallel
programming models already explained there are several alternatives. Raben-
seifner et al. [14] compare the different options to use a hybrid model and
identify the cases where one option is superior to another.

In Figure 2.1 we can see a summary of these alternatives to use a hybrid
model. As we have seen we can use only MPI launching one MPI process per
core. This option will communicate always through the MPI layer. In some
MPI implementations there are optimizations for shared memory systems to
make communications local to the node more efficient.
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Figure 2.1: Programming models taxonomy for clustered architectures
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We have added also the option of using pure OpenMP1 but in this the-
sis we will not use it. There are several research work towards enabling
distributed virtual shared memory. This alternative have the benefits of pro-
gramming in a shared memory style while running in a distributed system.
Intel offered “Cluster OpenMP” [24] but discontinued its support on 2010.
OmpSs also offers a cluster flavor “OmpSs@Cluster” [25]. These works do
not present a performance that can be compared with the one obtained by
MPI at very large scale. A common decision in this models is to implement a
relaxed memory consistency model in order to achieve a better performance.

The most “natural” approach is to use a hybrid programming model
combining a distributed memory model with a shared memory one. The
most widely used is to combine MPI and OpenMP. This combination allows
to exploit the good performance of MPI in distributed memory systems, with
the advantages of using OpenMP in the shared memory environment. When
using this approach there are still different options. A fully hybrid model
would launch one MPI process per node and spawn one OpenMP thread per
core (Figure 2.1 (a)). Another alternative is to launch more than one MPI
process per node, as the trend is to have nodes with several multi core sockets
and different hierarchies of memory levels (Figure 2.1 (b)).

Finally in this thesis we will consider the possibility to launch one MPI
process per core using only one OpenMP thread per MPI process (Fully
MPI: Figure 2.1 (c)). In this case the OpenMP level is only used to solve
load imbalance problems. The advantage of this configuration is that there
is no need to have the code fully parallelized with OpenMP only the parts of
the code that present load imbalance. This is important in all the pure MPI
existing applications because it is not necessary to parallelize all the code
that in some cases can be very extensive.

2.2 Execution Environments

Our target is a clustered architecture with shared memory nodes. During the
development of this thesis we have used mainly two execution environments,
until September 2012 we used Marenostrum2 to develop and run. Between

1In this subsection we will use OpenMP to refer to the shared memory programming
model but it can always be changed by OmpSs or SmpSs
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September and December 2012 Marenostrum2 was replaced by Marenos-
trum3. After December 2012 all the experiments and development has been
performed in Marenostrum 3.

2.2.1 Marenostrum 2

Marenostrum2 [26] was based on Power PC processors; its nodes were JS21
blades with two IBM Power PC 970MP processors with two cores each and
8Gb of shared memory.

Each node had 4 cores, 8 GB of shared memory and a local SAS disk of
36 GB. Each node had a network card Myrinet type M3S-PCIXD-2-I for its
connection to the high-speed interconnection and the two connections to the
network Gigabit. In figure 2.2 we can see the components of a JS21 node in
Marenostrum2

Figure 2.2: A node JS21 and its components

2.2.2 Marenostrum 3

Marenostrum3 [27] is based on Intel SandyBridge processors. Its compute
nodes are IBM iDataPlex dx360 M4 X servers with two 8-core Intel Xeon
processors (E5-2670) per node and 32 GB of shared memory. They also
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include a hard drive of 500Gb and an MPI network card Mellanox ConnectX-
3 Dual Port QDR/FDR10 Mezz Card. For management and GPFS they have
two Gigabit Ethernet network cards.

In figure 2.3 we can see a schematic picture of the components of a com-
pute node in Marenostrum3.

Figure 2.3: A compute node of MN3 and its components

We can see that each node has 2 sockets. Each socket has 8 cores. Caches
L1 data, L1 instructions and L2 are local to the core. L3 has 20 Mb and is
local to the socket.

This transition offers a new challenge for our balancing library as we
changed from 4 cores per node to 16 cores per node. And opens a new study
about the trade-off between the number of MPI processes and the number of
threads inside a single node.

2.3 Software

2.3.1 Compilers

During the development of this thesis we have used different compilers de-
pending on the applications requirements or the machine availability: In-
tel [28], GNU [29], XL [30] and Mercurium [31].
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It is not within the scope of this thesis to compare the performance of
different compilers. When doing performance evaluations, we have always
used the same underlying compiler for all the executions. In each evaluation
section, we state the exact compiler and settings used for the experiments.

2.3.2 Performance tools: Extrae and Paraver

An important part of this thesis is the in-depth evaluation of the efficiency
obtained by applications and how to improve it. To do this analysis, we have
used Extrae [32] and Paraver [33], two performance tools developed at BSC.

Extrae is a tracing tool that can obtain information about MPI, OpenMP,
OmpSs, hardware counters (PAPI) and other performance information during
the execution. We have worked together with Extrae developers to integrate
DLB and Extrae, resulting in a special Extrae tracing library to use with
DLB. This was necessary because both tools, DLB and Extrae, use the PMPI
interface to intercept MPI calls.

Paraver is the trace visualizer we have used to analyze traces obtained
from the executions. We use it also to compute some of the performance
metrics we use in this thesis, such as efficiency or utilization of resources.

2.3.3 MPI libraries

The selection of the MPI library has significant restriction; we need the li-
brary to offer MPI blocking calls with a non-busy wait mode (i.e., MPI does
not consume CPU while waiting on a blocking call).

When running in Marenostrum2, we used the MPICH [34] library because
it was installed on the system by default and it also offered the MPI blocking
calls with a CPU yield mode.

In Marenostrum3, we used OpenMPI [35], because it is the default MPI
library of the system. But in some applications with special needs we used
Intel MPI library [36]. Both libraries have a non-busy wait blocking mode.

To enable the non-busy wait mode usually it is enough to set an environ-
ment variable before the execution. The environment variable is different in
each version of MPI. In Table 2.1 we can see the environment variable that
must be set for each MPI library to enable a non-busy waiting mode.
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MPI Library Environment Variable

OpenMPI OMPI MCA mpi yield when idle=1

Intel MPI I MPI WAIT MODE=1

MPICH MXMPI RECV=blocking

Table 2.1: Environment variables necessary to set no busy waiting mode in
each MPI implementation
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Chapter3
Applications and Benchmarks

In this chapter, we are going to describe the benchmarks and applications
used during the evaluation of this thesis. To perform the different evalua-
tions we have used five benchmarks with different characteristics (i.e. PILS,
BT-MZ, SP-MZ, LUB, and Lulesh) and four applications (i.e., FLOWer,
GROMACS, GADGET, and Alya).

For each benchmark and application used we will overview their function
or the problem they solve, the programming model they use (initially or
added by us) and any other relevant information.

3.1 PILS: Parallel ImbaLance Simulation

PILS (Parallel ImbaLance Simulation) is a synthetic benchmark. We devel-
oped it to help us evaluate load balancing techniques. With PILS we aim to
reproduce the parallel region between MPI calls of an application.

The PILS benchmark has several configurable parameters that allow us to
replicate the behavior of different types of applications and parallel regions.
The different parameters are the following:

• Programming Model: We can compile four different versions of the
benchmark: MPI, MPI+OpenMP, MPI+SmpSs, and MPI+OmpSs.
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• Load Distribution: We can introduce the load balance of the application
as the different loads for each MPI process. The more equilibrated
the load distribution, the better load balance simulated. To compare
executions with different load balances the sum of the loads given to
the MPIs must be the same (this will give the same amount of total
work to do).

• Parallelism Grain: Represents the percentage of computation that is
run in parallel between MPI synchronizations. It is computed as the
reciprocal of the number of parallel regions between MPI blocking calls
(Par.Grain = 1

Par.Regions). You can see an example of the relationship
between Parallelism Grain and the number of parallel regions in Fig-
ure 3.1. As we will see the Parallelism Grain is directly related to the
malleability of the application.

MPI Synchronization

#omp parallel for
for (...)  do {
  ...
}

MPI Synchronization

#omp parallel for
for (...)  do {
  ...
}

MPI Synchronization MPI Synchronization
a) Parallelism Grain: 1 b) Parallelism Grain: 0.5

1

2

5

tim
e#omp parallel for

for (...)  do {
  ...
}

MPI Synchronization

#omp parallel for
for (...)  do ...

MPI Synchronization
c) Parallelism Grain: 0.25

#omp parallel for
for (...)  do ...
#omp parallel for
for (...)  do ...
#omp parallel for
for (...)  do ...

4

3

Figure 3.1: Parallelism grain explanation

• Iterations: The number of iterations that we will execute. Each iter-
ation includes the computational part (parallel regions in OpenMP or
SmpSs) and MPI communication.

In Algorithm 1 we can see the pseudocode of the core of PILS. The load
for each MPI process is read from the input, and correspond to the number of
iterations that will compute each process. Then the block size is calculated
based on the Parallel Grain parameter. In the code, we can see the OpenMP
version of the parallelization.
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Algorithm 1 PILS structure

1: BS = myLoad * parallelGrain
2: for (i=0; i<iterations; i++) do
3: for (j=0; j<steps; j+=BS) do
4: #pragma omp parallel for
5: for (k=j; k<BS; k++) do
6: compute();
7: end for
8: end for
9: end for

10: MPI call()

Parallel 
region

Parallel 
region

Parallel 
region

Parallel 
region

Parallel 
region

Parallel 
region

MPI 0                      MPI 1

Work Distribution

Ite
ra

tio
n

MPI_Barrier

Synchronization Synchronization

Synchronization Synchronization

Synchronization Synchronization

#pragma omp parallel for
for (    )  do {

}

OpenMP

for (    )  do {
  Task();
}
...
#pragma css task
Task(){

}

SMPSs/OmpSs

for (    )  do {

}

Serial

Figure 3.2: PILS benchmark
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In Figure 3.2 we can see a schematic representation of PILS. The work-
load is given at the beginning of the execution to each MPI process (work
distribution). This workload is computed in the parallel regions. The num-
ber of parallel regions depends on the parallelism grain parameter. A parallel
region in the OpenMP version corresponds to a parallel loop. In the SmpSs
version, a parallel region is a loop that creates several tasks and finishes with
an SmpSs barrier. At the end of the iteration there is an MPI barrier to
synchronize all the processes.

The core of the synthetic benchmark is a function that will do several
floating point operations without data involved. In the case of the OpenMP
version this function will be called each iteration, in the case of SmpSs version,
this function will be taskified (each call to the function will be a parallel
SmpSs task). In the right side of Figure 3.2 we can see how the code would
look like for the three versions (serial, OpenMP and SmpSs).

The cost of the core function in terms of time and computation is always
the same. The imbalance between MPI processes will be introduced by the
number of times that the function is executed which will be given by the
loads of each MPI process.

PILS do not aim to model a whole application. But a parallel application
can be modeled as several instances of PILS. This is because real applica-
tions do not always present a regular behavior regarding amount and kind of
imbalance or parallelism grain, among other factors that can affect the load
balancing mechanism.

3.2 BT-MZ and SP-MZ from NPB-MZ
(NAS Parallel Benchmarks Multizone)

The NAS Parallel Benchmarks (NPB) is a well-known benchmark suite to
test parallelization tools, models or systems. The Multizone version (NPB-
MZ)[37] is based on the NPB benchmarks but targets a multilevel paralleliza-
tion.

In the NPB-MZ benchmark suite, we can find 3 applications: LU (Lower-
Upper symmetric Gauss-Seidel), SP (Scalar Penta-diagonal), and BT (Block
Tri-diagonal). All of them solve discretized versions of the unsteady, com-
pressible Navier-Stokes equations in three spatial dimensions.
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Figure 3.3: NPB-MZ benchmarks zone partition

To achieve a multilevel parallelization a logically rectangular discretiza-
tion mesh is divided into a two-dimensional horizontal tiling of three-dimen-
sional zones for each benchmark (See Figure 3.3 left-hand side).

SP-MZ and LU-MZ do the zone partition in a symmetric way (i.e. all
the zones have the same size). Therefore, their executions are expected to be
balanced. On the other hand, the BT-MZ zone partition is done asymmetri-
cally, and this results in an imbalanced execution. In Figure 3.3 (right-hand
side) we can see the difference between a symmetric zone partition (top, for
SP and LU benchmarks) and an asymmetric zone partition (bottom, for BT
benchmark).

The NAS benchmarks can run different classes that correspond to the size
of the problem that it is solving. In Table 3.1 we can see the size of the mesh
for each class and the number of zones in which is divided each dimension
for the different multizone benchmarks.

In Figure 3.4 we can see a trace of the BT-MZ benchmark running with
4 MPI processes and 4 OpenMP threads each process. In blue color we
can see the computing phases of the benchmarks and green and red are a
MPI WaitAll and MPI Barrier respectively. When a processes reaches a
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Class
Mesh Dimensions Zones (x,y,z)

(x,y,z) LU-MZ SP-MZ BT-MZ

S 24 x 24 x 6 4 x 4 x 1 2 x 2 x 1 2 x 2 x 1

W 64 x 64 x 8 4 x 4 x 1 4 x 4 x 1 4 x 4 x 1

A 128 x 128 x 16 4 x 4 x 1 4 x 4 x 1 4 x 4 x 1

B 304 x 208 x 17 4 x 4 x 1 8 x 8 x 1 8 x 8 x 1

C 480 x 320 x 28 4 x 4 x 1 16 x 16 x 1 16 x 16 x 1

D 1632 x 1216 x 34 4 x 4 x 1 32 x 32 x 1 32 x 32 x 1

Table 3.1: NPB-MZ class problems

blocking MPI call, all its threads are idle waiting for the communication to
finish (black color in the trace). In this trace we can clearly observe the
imbalance introduced by the asymmetrical partition of the zones, we can
see how the less loaded MPI processes (1, 2 and 3) are waiting on an MPI
blocking call.

MPI_Barrier

MPI_WaitAll

Computing

Idle

Figure 3.4: Trace of BT-MZ, 4 MPI processes and 4 OpenMP threads each

In this thesis, we will use the BT-MZ and SP-MZ benchmarks as repre-
sentative of an imbalanced and a balanced application. The original version
that we will use of these benchmarks is MPI+OpenMP. We have modified
the BT-MZ benchmark to have an MPI+SmpSs and MPI+OmpSs version of
each one.
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3.3 LUB

MPI 0

MPI 1

block size

Figure 3.5: Distribution of blocks
among MPI processes in LUB

LUB is a kernel performing an LU ma-
trix factorization. The structure of data
is a two-dimensional square matrix orga-
nized by blocks. The size of the matrix
and the block size are input parameters
of the kernel. The data is distributed by
blocks of rows among the different MPI
processes as can be seen in Figure 3.5.

In Figure 3.6 we can see a graphical
description of the LUB algorithm used.
There are four functions that are ap-
plied to the data blocks, lu0, fwd, bdiv
and bmod. The fwd blocks can be done
in parallel between them but depend on

the lu0 computation. The bdiv blocks can be done in parallel but depend
on the lu0 block. And the bmod blocks can be done in parallel but each one
depends on the fwd block in the same column and the bdiv block in its row.
Each iteration the lu0 is applied to a block of the diagonal.

lu0

fwd

bdiv

bmod

step 1 step 2 step 3 step 4 

iteration 1 iteration 2 iteration 3 iteration 4

ite
ra

ti o
n

 1

lu0 fwd bdiv bmod

Figure 3.6: LUB behavior

To obtain a hybrid version, the straight forward solution would be to
parallelize the blocks of the fwd and bmod with OpenMP.
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In the following example we can see the main code of the LUB kernel
(left-hand side) and a possible hybrid parallelization (right-hand side). In
the example, N is the number of blocks, and A is the matrix.

for ( i =0; i<N; i++){
lu0 ( i , i ) ;
for ( j=i +1; j<N; j++){

fwd( i , j )
}
for ( k=i +1;k<N; k++){

bdiv (k , i ) ;
for ( j=i +1; j<N; j++){

bmod(k , j ) ;
}

}
}

for ( i =0; i<N; i++){
lu0 ( i , i ) ;
#pragma omp paral le l for
for ( j=i +1; j<N; j++){

fwd( i , j )
}
MPI Bcast(A[ i ] . . . )
for ( k=i +1; k<N; k++){

bdiv (k , i ) ;
#pragma omp paral le l for
for ( j=i +1; j<N; j++){

bmod(k , j ) ;
}

}
}

Main LUB kernel code LUB kernel code parallelized with
MPI+OpenMP

Figure 3.7: Trace of LUB, 4 MPI processes and 4 OpenMP threads each

In Figure 3.7 We can see a trace of an execution of the LUB kernel. In
this execution, we were running 4 MPI processes on the same node with 4
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OpenMP threads each one. In the upper trace, we can see the whole execution
in the lower trace we can see a zoom of the first iteration.

We can observe that this benchmark presents a critical imbalance. On
one hand, the lu0 and fwd functions are only applied to a row of blocks.
Therefore while the process that owns this row is computing the lu0 and
fwd blocks the other processes are waiting. We can observe this in the lower
trace: while the MPI process 1 is computing the lu0 and fwd blocks (white
and red), MPI processes 2, 3 and 4 are idle (black).

We can also observe the triangular behavior of this benchmark, and how
as the load decrease during the execution at the end of the trace some pro-
cesses are idle all the time.

We can see how the load balance during the execution is very irregular,
when computed the load balance of the whole application we obtain 0.64,
while the load balance measured for the first iteration is 0.82.

On the other hand, each iteration the number of rows of blocks that have
each MPI process will be different therefore the load of each MPI process will
be different.

Moreover, the imbalance in this benchmark is very irregular as it changes
during the execution. Each iteration a different process will be doing the lu0
and fwd blocks and will have a different amount of rows of blocks.

The LUB benchmark has three versions MPI+OpenMP, MPI+SmpSs
and MPI+OmpSs. The OpenMP version is parallelized at the block level,
as we have shown in the code example. In the case of SmpSs and OmpSs
we have defined each function (lu0, fwd, bdiv and bmod) as a task with the
corresponding dependences to ensure the correct execution.

3.4 FLOWer

The FLOWer code[38] solves the compressible, three-dimensional Reynolds-
averaged Navier–Stokes equations. It uses a cell-vertex, finite-volume for-
mulation on block-structured meshes. The baseline method employs cen-
tral space discretization with artificial viscosity and explicit multistage time-
stepping schemes. It has been developed at the German Aerospace Center
(DLR).

FLOWer is part of a project to simulate PHOENIX, which is a small-scale
prototype of the Space Hopper (similar to the US Space Shuttle). FLOWer
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is used to simulate the flow around the clean configuration of PHOENIX by
3D Euler and Navier-Stokes computations.

Figure 3.8: Trace of FLOWer, 8 MPI processes and 4 OpenMP threads each

This application is implemented in Fortran and provides three different
parallelized versions: OpenMP, MPI, and a hybrid MPI+OpenMP. In our
experiments, we have used the hybrid parallelization of FLOWer. The source
code of the MPI+OpenMP version contains more than 300.000 lines of code
and 363 loops parallelized with OpenMP.

We have used FLOWer without analyzing its performance nor its behavior
previously. Neither it was necessary to modify the code to use it.

In Figure 3.8 we can see a trace of an execution of FLOWer with 8 MPI
processes and 4 OpenMP threads each process. In blue we can see the compu-
tation, that is mainly done in parallel. We can observe some calls to collective
MPI calls (i.e. MPI Alltoall and MPI Allreduce) in pink and yellow. We can
note that the MPI process 8 is more loaded than the other MPI processes,
for this reason, the other MPI processes and its threads must wait on an MPI
call.

3.5 GROMACS

GROMACS [39] [40] is a versatile package to perform molecular dynamics,
i.e. simulate the Newtonian equations of motion for systems with hundreds
to millions of particles. It is primarily designed for biochemical molecules
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like proteins, lipids, and nucleic acids that have a lot of complicated bonded
interactions, but since GROMACS is extremely fast at calculating the non-
bonded interactions (that usually dominate simulations) many groups are
also using it for research on non-biological systems, e.g. polymers.

We use version 4.0.5 of GROMACS. We started with an MPI version of
GROMACS and parallelized some parts of the code with SmpSs to have a
hybrid MPI+SmpSs version. It is important to mention that this application
was not parallelized completely with SmpSs. We will use the SmpSs level
of parallelism only to help load balance the MPI level. For this reason, the
executions must be done with only one SmpSs thread per MPI process, the
same way that when running the MPI only version.

MPI_Sendrecv

SMPSs tasks

Computing

Idle

MPI_Barrier

Figure 3.9: Trace of GROMACS, 4 MPI processes and 1 SmpSs thread each

In Figure 3.9 we can see a trace of GROMACS with 4 MPI processes
and one SmpSs thread each one. What we visualize in the trace is a cut
of the whole execution including two iterations. In green, we can see the
computation that has been parallelized with SmpSs and in blue the compu-
tation that is serial code in each MPI process. We can observe that there is
load imbalance between MPI processes. The load imbalance is visible in the
trace because the different processes spend different amount of time in the
MPI Barrier (in red) waiting for the most loaded process (i.e. MPI process
3). In this application, the load imbalance depends on the input.
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3.6 GADGET

GADGET (GAlaxies with Dark matter and Gas intEracT), [41] [42] is a
production code that performs a cosmological N-body/SPH simulation. It
can be used to address different astrophysical problems such as colliding and
merging galaxies or the formation of large-scale structure in the Universe.

The gravitational forces in GADGET are computed with a hierarchical
tree algorithm, and the fluids are represented through smoothed particle
hydrodynamics (SPH). The computation is performed by time-steps.

We used the version 2.0 of GADGET and started from a version paral-
lelized with MPI. Although the application comes with its own load balancing
code that dynamically updates the tree, there was still some imbalance prob-
lems that were not solved.

To obtain a hybrid version of the application that can be balanced with
DLB we added an OpenMP and SmpSs parallelization. We only parallelized
the parts of the code that could benefit from the load balancing mechanism
(like previously with GROMACS), they were 3 loops out of 35.000 lines of
code. The input we use runs on 800 CPUs and has a high load imbalance.

3.7 Lulesh

Lulesh (Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-
ics) [43] [44] [45] is a mini-app developed at the Lawrence Livermore National
Lab (LLNL) and included in the CORAL benchmark suite.

Lulesh is a shock hydrodynamics code for unstructured meshes. The ref-
erence code is drawn from a production LLNL hydrodynamics code. Lulesh
is large enough (more than 4,000 lines of code for the parallel MPI imple-
mentation) to be more complex than traditional benchmarks, yet compact
enough to allow a large number of implementations.

The code of this mini-app is available for MPI, OpenMP, and a hybrid
MPI+OpenMP version, additionally, it has been ported to different architec-
tures or programming models (e.g. Chapel, GPUs, CHARM++). We started
from the MPI version and added OmpSs to the parts of the code that could
benefit from the load balancing mechanism.

When running Lulesh the number of MPI processes that can be used must
be a cube of an integer. For this reason, we have executed most of the exper-
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iments with 64 MPI processes (4x4x4), which fills 4 nodes of Marenostrum3
(4 nodes x 16 cores per node).

Lulesh 2.0 include a flag to set the amount of load imbalance between
regions. A value of 0 in the flag means the execution presents no imbalance
(i.e. perfect load balance). Increasing the value of the flag increases the load
imbalance. In our experiments, we executed with values from 0 to 8.

MPI_Sendrecv

OmpSs tasks

Serial code

MPI_Allreduce
OmpSs tasks 
load balance 
(Average/Maximum)

Figure 3.10: Trace of Lulesh, 64 MPI processes and 1 OmpSs thread each.
Load balance 0

In Figure 3.10 we can see a cut of a Lulesh trace with two iterations.
In this case, we are running 64 MPI processes with one OmpSs thread each
process. In green, we can see the part of the code that was parallelized with
OmpSs and in blue the remaining computing phases not parallelized. The
most relevant MPI call in this code is an MPI Allreduce that can be seen
in pink. When computing the load balance of the OmpSs tasks we obtain a
0.93 (i.e. 1 is a perfect load balance and 0 the worst case).

In Figure 3.11 we can see the same execution (64 MPI processes, 1 OmpSs
thread, 2 iterations) with the load balance flag set to 8. In this case, the
load imbalance can be seen in the OmpSs taskified part of the code. When
computing the load balance of the OmpSs tasks of this execution we obtain
0.5.
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MPI_Sendrecv

OmpSs tasks

Serial code

MPI_Allreduce
OmpSs tasks 
load balance 
(Average/Maximum)

Figure 3.11: Trace of Lulesh, 64 MPI processes and 1 OmpSs thread each.
Load balance 8

3.8 Alya

Alya [46] [47] is a simulation code for computational mechanics developed at
BSC by the CASE department. The Alya system can solve different physics,
such as incompressible flows, compressible flows, turbulence, solid mechanics
or particle transport.

Alya has been designed and developed for HPC environments. It is in-
cluded in the Unified European Application Benchmark Suite (UEABS) [48]
which contains 12 applications currently relevant, scalable to thousands of
processors and maintained into the future. Alya is parallelized with MPI and
OpenMP.

In Figure 3.12 we can see a trace of an Alya execution including two time
steps when solving a fluid dynamics simulation. In this trace, we can see the
different computational phases inside a time step in different colors (yellow,
purple, brown) the serial code appears in green and in pink, we can identify
the MPI calls MPI Allreduce. We can observe that the load imbalance in
this execution was very high. The load imbalance depends highly on the
input mesh. We will explain further the inputs used and its characteristics
in Chapter 9.
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MPI_Allreduce

Idle

Loop elements

Solver 1

Solver 2

Serial code

Figure 3.12: Trace of Alya, 65 MPI processes and 4 OpenMP threads each
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Chapter4
Related Work

It is well known that load imbalance is a source of system efficiency loss
in HPC applications. One of the characteristics of the HPC environment
is that the resources necessary to run must be specified beforehand, being
not possible to ask for more resources in the middle of an execution to solve
the load imbalance. The straightforward solution for this problem is to tune
parallel codes by hand. Usually, programmers include load-balancing code
or redistribute the data to improve the performance of their applications.

These alternatives usually result in codes optimized for specific environ-
ments or execution conditions and imply devoting many economic and human
resources to tune every parallel code. Furthermore, usually these solutions
do not consider or are not able to solve other factors such as heterogeneous
architectures, load imbalance because of resource sharing, or irregularity of
the application.

This is especially dramatic in MPI applications because data is not easily
redistributed. And even more in MPI based hybrid applications because the
computational power loss due to load imbalance is multiplied by the number
of threads used per MPI process. For these reasons load imbalance in MPI
applications is targeted in many research works.

Proposed solutions for load balancing can be divided into two main
groups: The ones that are applied before the execution and the ones
that are applied during the execution.
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4.1 Before the execution

The solutions that are applied before the computation try to do a balanced
distribution of the data and computation between the MPI processes. These
solutions are usually applied to particular data distribution (graph, mesh...)
and must be calculated before each execution for each different set of in-
put data. The most representative and widely used solution in this group is
Metis [1]. Shang et al. [49] discuss the impact of the different mesh partition-
ing solutions (Metis, ParMetis, Scotch...) in the performance of a CFD code.
They conclude that the mesh partitioning strongly affects the performance,
especially for large scale parallel codes.

This type of solutions has several drawbacks, on the one hand, the ad-
ditional computation time needed to do the domain partitioning before the
execution. On the other hand, they can only handle static imbalances coming
from data distribution; they cannot handle dynamic imbalances coming from
the sharing of resources, interferences from the operating system or inherent
to the execution.

Another problem of this solutions is that the load can change during the
execution, there are two main examples for this, on the one hand changing the
geometry (moving bodies, deformations, etc.). On the other hand changes
in the granularity of the mesh. To solve these problems remeshing is used
during the execution (re-partition the mesh to obtain a better load balance).
PAMPA [4], CIMLib [50] [51] and Yi et al. [52] are some examples that try
to improve the load balance by repartitioning the mesh during the execution.
These solutions are expensive in execution time because a remeshing must
be done periodically. And as we will see in Chapter 9 it is not always direct
to compute a well balanced distribution, either because of the characteristics
of the mesh or because the heuristic need to calculate the load balance is not
trivial or direct to find. Moreover, different parts of the code can present
different load balance distributions, making it impossible to maximize the
load balance with a single mesh partition.

4.2 During the execution

The second group tries to load balance applications during the execution,
in the literature we can find two kinds of approaches: the ones that re-
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distribute the data or the ones that redistribute the computational
power.

4.2.1 Redistribute the data

Several approaches choose the option to redistribute the data of the applica-
tion so that it is better balanced. Charm++ [53] is an object-oriented par-
allel programming language that employs object migration to achieve load
balance. Adaptive MPI (AMPI) [5] is an implementation of MPI that uses
the load balancing capabilities of Charm++. Also based in Charm++ re-
distribution capabilities we find the work of Deodhar et al. [54] they use a
compiler load prediction to decide the migration of data for load balancing
purposes.

Balasubramaniam et al. [55] also propose a library that dynamically bal-
ances MPI processes. Their load balancing is done based on a parallel loop; a
dynamic scheduler will decide how many iterations will be executed by each
process and the data will be migrated accordingly.

Mart́ın et al. propose FLEX-MPI [56] an extension to MPI to sup-
port load balancing in heterogeneous dedicated or non-dedicated systems,
the runtime will collect hardware counters during the execution using the
MPI profiling interface and based on this information the application data is
redistributed to improve the load balance.

The approach of redistributing the data is usually rigid regarding the
type of imbalance it can solve. The granularity of the imbalance should be
enough to allow a data migration and still obtain a performance gain. These
solutions must be very careful with the frequency of the redistribution, a high
frequency can introduce too much overhead, a low frequency will leave some
imbalances unsolved. Moreover, to apply these solutions the data structures
of the application should be able to be repartitioned and in most of the cases
the applications are aware of the load balancing algorithm and are modified
somehow.

4.2.2 Redistribute the computational power

The approaches that redistribute the computational power to solve the im-
balance are more flexible and transparent to the applications and the pro-
grammer.
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We can find a broad amount of research works for specific applications.
The NAS benchmarks include [37] in the code of BT-MZ a load balance
mechanism based on changing the number of threads assigned to each MPI
process depending on the size of the zones it has assigned [57]. Meraji et
al. [58] present a load balancing algorithm for a discrete event simulator,
every C cycles they gather information of each processor, the number of
events processed since the last execution of the load balancing algorithm
and the number of messages sent by that processor. With this information,
they will migrate logical processors to less loaded processes. Arafat et al. [59]
propose a Resource Sharing Barrier to load balance random walk Monte Carlo
simulations. They will redistribute the processor resources of the inner levels
of parallelism when groups that complete their work early lend their resources
temporarily to slower groups. The target application must be modified to
use the RSB capabilities.

These approaches can only be applied to the specific applications. We
will focus on more generic approaches that can be applied to any kind of
application.

The first approach is to combine two levels of parallelism. Smith et
al. [60] discuss the best solution between MPI, OpenMP or the hybrid (MPI
+ OpenMP) model. They conclude that the hybrid programming model may
not be the best solution for all the codes. However, in some situations, a sig-
nificant benefit can be obtained from this hybrid model. Henty et al. [61]
compare MPI versus a hybrid MPI + OpenMP model in an SMP cluster.
They conclude that the hybrid model is more efficient in very load imbal-
anced situations. In the same kind of study on clusters of multiprocessors,
Cappello et al. [62] expose that the superiority of one model depends on
the amount of parallelization at shared memory level, the communication
patterns, and the memory access patterns.

Some relevant works that try to solve the imbalance redistributing the
computational power are the following. Zhang et al. [63] presented a solution
for Hyperthreaded (HT) and Simultaneous Multi Threaded (SMT) processors
with a self-tuning loop scheduler that selects the number of threads that
should be created to execute a parallel loop. They monitor the execution time
of each iteration and try the different OpenMP schedulers and combination of
threads by using the SMT or not. With this information, the best scheduler
and number of threads is found.
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For non-dedicated systems Sievert et al. [64] propose a system that al-
locates more processors than needed when the application starts. When it
detects that a process is not performing as expected the system swaps the
MPI process to a less loaded processor.

El Maghraoui et al. [65] use a technique of process migration to load
balance iterative applications. The system will give them more resources
during the execution, and they will decide to migrate processes to these new
resources. They use the PMPI profiling interface to obtain performance in-
formation and take the decisions. They are limited to iterative applications
and systems where it is possible to get additional resources during the execu-
tion. We will focus on solutions that try to obtain the maximum efficiency of
the given resources and do not need a special kind of application structure.

One solution that propose to redistribute the computational power is
Invasive Computing [66]. This paradigm presented by Teich et al. propose
that applications are resource aware and can ask for resources when arriving a
massive parallel region or deallocate resources if the program enters a retreat
phase. The programmer is in charge of marking the parts of the code where
more resources can be used and retreat phases. Our approach is transparent
to the user, without the need of modifying the application or analyzing its
performance previously.

Schreiber et al. [67] propose a load balancing mechanism in invasive com-
puting for hybrid applications. The number of cores assigned to each MPI
process can be changed based on information given by the application (devel-
oper). This information consists of a scalability graph or a workload number
obtained from previous executions.

Other solutions that use the redistribution of computational power and
are aimed at applications with two levels of parallelism are the works done
by Spiegel et al. [68] and Duran et al. [12]. They seek to balance applications
with two levels of parallelism by redistributing the computational power of
the inner level, and they all do it at runtime without modifying the applica-
tion. The first one balances MPI+OpenMP hybrid applications. The second
one balances OpenMP applications with nested parallelism. Although their
algorithms are different, the two first converge to the same solution. They
both use previous iterations to detect the load of each process.

The solution we developed in this thesis belongs to the group of solutions
applied at runtime, and it tries to redistribute the computational power. In
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our case we do not need the application to present an iterative pattern, nor a
regular imbalance during the execution. Moreover, our proposal can handle
fine grained load imbalances.
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applications with iterative pattern and loops
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Migrate MPI
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Sievert et al.[64],El
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Teich et al.[66],
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Use second level
of parallelism

Iterative pattern needed. Attacks only coarse
grain load balance

Spiegel et al.[68],
Duran et al.[12]

Table 4.1: Related work summary
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Chapter5
The Approach: Dynamic
Load Balancing Library

The core of this thesis is based on a runtime library: The Dynamic Load
Balance library. DLB is a framework that will manage the computational
resources within a node to obtain the maximum efficiency.

In this chapter, we describe the key features of the DLB framework and
the main concepts of its architecture.

5.1 DLB Philosophy

The DLB library aims to improve the load balance of HPC hybrid applica-
tions (i.e., two levels of parallelism). In Figure 5.1 we can see the structure
of a typical HPC hybrid application: one application that will run processes
on several nodes, and each process will spawn several threads. In this thesis
we will refer to these two levels of parallelism as the inner level of parallelism
(threads) and outer level of parallelism (processes).

In the context of this thesis, the outer level of parallelism will be MPI.
MPI is the standard de facto for HPC applications, and most scientific appli-
cations are already implemented using MPI. Moreover, MPI does not offer a
solution to load balancing problems mainly because it is not malleable.
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Figure 5.1: Typical structure of an HPC application

However, as we will see in the following sections, DLB is designed and
prepared to be used with other programming models applied at distributed
memory level (e.g. PGAS, Charm++) or parallel libraries with a reasonable
integration effort.

The central idea in which the DLB library is based is to balance the
outer level of parallelism by redistributing the resources of the inner level of
parallelism.

The most distinctive characteristics of the DLB library are the following:

• No need for exhaustive performance analysis of the application.

• Is not necessary to modify the application.

• Can solve load imbalance problems from different sources (i.e. Data
load imbalance, algorithmic load imbalance, resources load imbalance).

• Can share resources between different applications running on the same
node.

5.2 Main Concepts and Terminology

DLB is a runtime that will manage the resources inside a computational
node to maximize the efficiency. In the current implementation, we do not
consider sharing resources between different users nor accounting of resources
for a fair share.
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The computational resources DLB is in charge are CPUs inside a node
with shared memory.

We consider that there are running several processes in a computational
node. Each process can have one or more threads. Threads are managed by
a parallel runtime (i.e. OpenMP) and DLB will use an API offered by the
parallel runtime to regulate the threads of each process.

Each CPU will be owned by one and only one process. The owner of a
CPU is the only one to have privileges over it. The owner of a CPU does not
change while the process is alive.

Figure 5.2: States of a CPU in DLB

A given CPU can be used by other processes that are not the owner if
the owner is not using it. Only one thread can be active at the same time in
a CPU. DLB does not allow oversubscription of CPUs.

The owner of a CPU can lend it to the system. When a CPU has been
lent to the system, the owner does not change. When a CPU is idle because
it has been lent, any process in the system can borrow it. The owner of a
CPU, and only the owner can claim a previously lent CPU.

In Figure 5.2 we can see a graph summarizing the different states of a
CPU in DLB and what triggers a transition between states. By default the
CPUs are in Disabled state, meaning that they are not in the system. When
a process starts its CPUs are added to the system, and while the owner is
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using them they are in the Busy state. When the owner lends a CPU to the
system, the CPU is Idle and ready to be used by any process in the system.
If another process, not the owner, gets a CPU to use it, the CPU is Borrowed.
When the owner of a CPU wants to use it, it has preference over the other
processes in the system, if the CPU is Idle he can take it. If the CPU is
being used by another process (Borrowed state), the owner will claim it, and
the CPU will be in Claimed state until the borrowing process releases it.

5.3 DLB Framework

In this section, we are going to explain the structure of the DLB library. The
DLB library has been designed and developed in a modular way. This design
allows to expand the functionality of the library quickly, for example:

• Add support for different programming models at the outer level of par-
allelism. The current version has support for MPI and the concurrent
execution of multiple applications.

• Add support for different programming models at the inner level of
parallelism. The current version of the DLB library supports OpenMP
and OmpSs. These are two examples of different levels of integration.
With the OpenMP runtime, almost no integration was required, we
used the standard OpenMP API (omp set num threads()) to change
the number of threads available. On the other hand, with OmpSs,
we did a more extensive integration to exploit the benefits of having
information from the runtime.

• Add new balancing algorithms.

DLB can be divided into three layers, as shown in Figure 5.3, the outer
level of parallelism layer, the load balancing algorithms and the inner level
of parallelism layer.

5.3.1 The outer level of parallelism layer

This layer is the entry point to the DLB library. This layer decouples the
DLB library from the programming model in the outer level.
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Figure 5.3: DLB framework divided in layers
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As we can see in Figure 5.3 we have three different entry points to the
DLB library depending on the kind of application.

MPI Application: For applications implemented using the communication
library MPI. DLB will automatically intercept the MPI calls using the
runtime interposition (PMPI). With this technique we do not need to
recompile the application, just preloading the library it will intercept
the MPI calls. We will explain this technique further in the following
section 5.4.

MPI Application with Extrae tracing: For MPI applications that are
being traced with the Extrae tracing library. Extrae uses the same in-
terposition technique as DLB. Therefore, we need a special cooperation
between the two libraries. A special Extrae library is available that will
call the DLB API directly for MPI and also a special DLB library that
does not include the interception symbols for MPI calls.

DLB Applications or Runtimes: For applications using the DLB API or
runtimes with support for DLB. DLB offers a public API (we will see
it in detail in section 5.5) this API can be used to give hints to DLB
about the application behavior either from the application code itself
or a programming model runtime. E.g., inform DLB that the process
is entering a serial part of the code and will only need one thread.

This layer includes several APIs depending on the kind of application
we are running. But all of them finally converge to the internal DLB API.
The internal DLB API will communicate with the different load balancing
algorithms.

5.3.2 The inner level of parallelism layer

This layer controls the malleability of the programming model and abstracts
the DLB library from the programming model underneath. The inner level
of parallelism layer will manage the threads for the different parallel runtimes
supported based in the decisions taken by the load balancing algorithms.

In Figure 5.3 we can see how the layer for the inner level of parallelism can
decouple DLB from the programming model below. The different load bal-
ancing algorithms will call the internal API to change the number of threads.
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Internally DLB will detect the programming model used and call the corre-
sponding API.

The current version of DLB supports OpenMP and OmpSs. SmpSs is no
longer maintained because the SmpSs runtime is discontinued. But we will
see some early results obtained with SmpSs in this thesis.

5.4 Runtime Interposition

The DLB library exploits the technique of the runtime interposition of dy-
namically loaded libraries. This technique can be used thanks to the profiling
mechanism MPI offers to instrument MPI applications. The MPI profiling
mechanism consists of a different interface that is called before the real MPI
call (PMPI calls). This mechanism was intended to be used by profiling tools,
so it allows to detect when an MPI call starts and finishes.

In Figure 5.4 we can see with an example how the standard MPI profiling
mechanism works. The Figure 5.4(a) shows the standard behavior of an MPI
call, where an application calls an MPI function (MPI send) and the function
is executed from the MPI library that was used at link time.

In Figure 5.4(b) we can see the sequence of calls that are executed when
the runtime interposition is used. In the DLB library, there are defined
functions with the same signature than the ones we want to intercept. When
the application calls an MPI function the code executed is the one in the
DLB library. It is then responsibility of the DLB library to call pmpi send()
that is the function of the MPI library that implements the functionality of
the send function. To obtain this behavior it is necessary to load the DLB
library with LD PRELOAD when running the MPI application.

Finally, if we want to profile the application and use the DLB library
we need a workaround because of the profiling mechanism and the DLB
interception technique clash. In Figure 5.4(c) we can see the solution that
consists of a special Extrae tracing library which will call the internal DLB
API before and after each MPI call.

In this case, the runtime interposition is easy thanks to the profiling
mechanism of MPI. But if we wanted to use the DLB library with another
programming model that does not present this facility it is still possible to do
it. The prerequisite for doing this is to have an application dynamically linked
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(a) MPI application behavior

(b) MPI application intercepted by DLB behavior

(c) MPI application traced by Extrae and using DLB behavior

Figure 5.4: MPI profiling mechanism used by DLB and Extrae
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with the programming model library. Then a binary interception should be
done.

5.5 DLB public API

The DLB API can be divided into three parts:

MPI API: This is a specific API for MPI. As we can see in figure 5.3 we
offer an MPI interface that will be called by Extrae if we are tracing the
application or internally in the MPI intercept API. This set includes
two functions for each MPI call, one that is called before the MPI call
is performed, and another one that is called after the MPI call is done.
For example the MPI Barrier will have: DLB MPI Barrier enter and
DLB MPI Barrier leave.

Basic set: The basic set is very simple, reduced and oriented to application
developers. It is designed to be called from the application code to
give hints about the application behavior or structure to DLB, so that,
DLB can maximize the performance of the execution. The different
functions of the API will be explained in detail in next. section(5.5.1).

Advanced set: The advanced set is oriented to programming model run-
times but can be used by applications also. It is designed to give more
detailed information to DLB. E.g., the amount of parallel tasks ready,
with this information DLB can take the corresponding decisions to
maximize the utilization of resources. We have used the advanced API
to integrate DLB with the Nanos++ runtime library, and it is ready
to be used by other runtime libraries. The advanced functions will be
explained in detail in section 5.5.2.

5.5.1 Basic set of DLB API

The first design of the DLB library was a dynamic library that would work
completely transparent to the application. But after obtaining success with
this approach, we saw that with a small effort from the application program-
mers’ the performance could be improved significantly.
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For this reason, we made public a DLB API for applications. This API
is intended to give hints of the application to DLB. With these hints, DLB
can make a more efficient use of resources.

• void DLB disable(void):

Will disable any DLB action. And reset the resources of the process to
its default. While DLB is disabled there will not be any movement of
threads for this process. Useful to limit parts of the code were DLB will
not be helpful, by disabling DLB we avoid introducing any overhead.

• void DLB enable(void):

Will enable DLB. DLB is enabled by default when the execution starts.
And if it was not previously disabled it will not have any effect.

• void DLB max parallelism(int max threads):

Will limit the maximum number of threads that can be used. Useful
to mark parts of the code with a limited parallelism.

• void DLB single(void):

Will lend all the threads of the process except one. Useful to mark
parts of the code that are serial. The remaining threads can be used
by some other process. All the DLB functions will be disabled except
lending the thread when entering or exiting an MPI call, DLB parallel
and DLB enable.

• void DLB parallel(void):

Will claim the default threads and enable all the DLB functions. Useful
when exiting a serial section of code.

We can summarize the behavior of these functions with the states graph
shown in figure 5.5. We can consider three states for DLB (for each process)
Enabled, Disabled and Single. Enabled would be the default state, where
DLB will react to any API call.

The Disabled state will not allow any change in the number of threads
(only a call to DLB enable will have an effect). The number of threads of
the process in a Disabled state will be the default.

The Single state will only react at DLB enable or DLB parallel API calls.
The number of threads of the process in the Single state will be 1.
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Figure 5.5: DLB states explained

5.5.2 Advanced set of DLB API

The advanced set of calls is designed to be used by runtimes, either in the
outer level or the inner level of parallelism. But advanced users can also use
them from applications.

• To manage DLB:

? void DLB Init(void):

Initialize the DLB library and all its internal data structures. Must
be called once and only one by each process in the DLB system
(if it is called more than once from the same process an error will
be issued).

? void DLB Finalize(void):

Finalize the DLB library and clean up all its data structures. Must
be called by each process before exiting the system.

• To obtain resources from the system:

? void DLB UpdateResources max(int max resources):

Check the state of the system to update your resources. You can
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obtain more resources in case there are available CPUs. The max-
imum number of resources that you will get is max resources. If
no parameter is given the maximum resources available are given.

? void DLB Retrieve(void):

Claim all your default resources previously lent.

? void DLB ClaimCpus(int cpus):

Claim as many CPUs as the parameter cpus indicates. You can
only claim your CPUs. Therefore if you are claiming more CPUs
than the ones that you have lent, you will only obtain as many
CPUs as you have lent.

? int DLB CheckCpuAvailability(int cpu):

This function returns 1 if your owned CPU is available to be used,
0 otherwise. This function is only valid if the calling process is
the owner of the CPU. Useful to know if a claimed CPU is ready
to be used by its owner, and avoid oversubscription of threads to
CPUs.

• To lend resources to the system:

? void DLB Lend(void):

Lend all your resources to the system.

? int DLB ReleaseCpu(int cpu):

Lend this CPU to the system. The return value is 1 if the operation
was successful and 0 otherwise.

• To return claimed resources to the system:

? void DLB ReturnClaimedCpus(void):

Check if any of the resources you are using has been claimed by
its owner and return it if necessary.

? int DLB ReturnClaimedCpu(int cpu):

Return this CPU to the system in case it was claimed by its owner.
The return value would be 1 if the CPU were returned to its owner
and 0 otherwise.
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5.6 Technical requirements

There are several technical requirements of the DLB library, although we
have already commented them in the corresponding section, we are going to
summarize here all of them.

Programming models: The currently supported programming models or
runtimes by DLB are the following:

• MPI + OpenMP

• MPI + OmpSs

• MPI + SmpSs (not maintained)

• Nanos++ (Multiple Nanos++ Applications, can be OpenMP or
OmpSs model)

Shared Memory between processes: DLB can balance processes run-
ning on the same node and sharing memory. DLB is based on shared
memory and needs shared memory between all the processes sharing
resources.

Preload mechanism for MPI applications: When using MPI applica-
tions we need the preload mechanism (in general available in any Linux
system). This is only necessary when using the MPI interception, it is
not necessary when calling DLB with the public API from the applica-
tion or a runtime.

Parallel regions in OpenMP: In OpenMP applications we need paral-
lelism to open and close (parallel region) to be able to change the num-
ber of threads. This is because the OpenMP programming model only
allows to change the number of threads outside a parallel region. We
also need to add a call to the DLB API to update the resources used
before each parallel. This limitation is not present when using the
Nanos++ runtime.

Non-busy waiting for MPI calls: When using MPI applications we need
the MPI blocking calls not to be busy waiting. However, DLB offers a
mode where one CPU is reserved to wait for the MPI blocking call and
is not lent to other processes.
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The DLB library supports several load balancing algorithms, in this chapter
we are going to explain in detail the two most important algorithms that are
implemented in the current version of DLB.

LeWI is the second algorithm we will see and is the main contribution
and core of this thesis. The LeWI algorithm is based on the idea of lending
the CPUs of a process when it is blocked waiting on an MPI call.

The other algorithm that was implemented within DLB is the Dynamic
Weight Balancing algorithm (DWB). DWB dynamically detects iterative re-
gions, with the performance information of these regions it will decide the
best distribution of threads among the MPI processes running on the same
node. This algorithm is based on an earlier work presented by Duran et
al., and the study of its limitations lead us to develop the new algorithm
Lend When Idle (LeWI). DWB was used as an inspiration and motivation to
develop LeWI.

In the following sections, we will see in detail how these algorithms work,
and some performance results.
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6.1 DWB: Dynamic Weight Balancing

6.1.1 Algorithm

The Dynamic Weight Balancing (DWB) algorithm is based on a work pre-
sented by Duran et al. [12]. Duran et al. applied the algorithm to OpenMP
applications with nested parallelism. It was used to decide the number of
threads to spawn in the inner loops. We will apply the same algorithm to
MPI+OpenMP applications, and we will use the algorithm to redistribute
the number of threads of the MPI processes running on the same node. With
the new distribution of threads, we aim to obtain a more balanced execution.

Figure 6.1: Dynamic weight Balancing (DWB) Algorithm

In Figure 6.1 we can see the DWB algorithm. The DLB library will
intercept all the MPI calls and aggregate the amount of time each process
spends in computation and waiting in MPI blocking calls.

DLB will detect iterative patterns in the application using the Dynamic
Periodicity Detector (DPD) (Freitag et al. [69]). When an iteration is identi-
fied the DWB algorithm will compute the new optimal distribution of threads
using the collected metrics. This distribution will be applied to the following
parallel region.

To decide the new distribution, a computational weight is calculated for
each MPI process as shown in Equation 6.1. Where ComputeT ime[i] is the
amount of time process i has been computing (not in MPI communication).
The numCpus[i] is the number of CPUs that process i has been using during
the last iteration detected.
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weight[i] =
ComputeT ime[i] ∗ numCpus[i] ∗ 100

totalComputeT ime
− (weight 1 cpu) (6.1)

totalComputeT ime =
numMPIs∑

n=1

ComputeT ime[n] ∗ numCpus[n] (6.2)

weight 1 cpu =
100

totalCpus
(6.3)

NewNumCpus[i] = 1 +
weight[i] ∗ (totalCpus− numMPIs)∑

weight[n]
(6.4)

The computational weight of each process is expressed as a percentage, to
calculate the corresponding distribution we need to map this percentage to
the number of CPUs for each process, the formula to calculate this is shown in
Equation 6.4. Always committing to the condition that each process should
have at least one thread. The obtained number of CPUs is rounded to the
closest integer number.

In Figure 6.2(b) we can see how the DWB algorithm can improve the
performance of an imbalanced MPI application by redistributing the number
of threads. In this example, an application running with 2 MPI processes
is started with a homogeneous distribution of 2 threads per MPI process.
During the first part of the execution, the DWB algorithm will collect met-
rics about the performance. When an iterative pattern is detected, and
an iteration finishes the DWB algorithm will compute the optimal distri-
bution of threads. In this case the collected metrics will be the following:
ComputeT ime[1] = 1, 1s, ComputeT ime[2] = 2, 9s.

With this metrics and applying equations 6.1 through 6.4 we obtain the
following:

totalComputeT ime = (1, 1 ∗ 2) + (2, 9 ∗ 2) = 8

weight 1 cpu =
100

4
= 25

weight[1] =
1, 1s ∗ 2 ∗ 100

8
− (25) = 2, 5

63



Chapter 6. Load Balancing Algorithms

(a) Imbalanced MPI
application

(b) Imbalanced MPI application balanced with DWB

Figure 6.2: DWB Algorithm applied to an imbalanced application
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weight[2] =
2, 9s ∗ 2 ∗ 100

8
− (25) = 47, 5

NewNumCpus[1] = 1 +
2, 5 ∗ (4− 2)

50
= 1, 1 ≈ 1

NewNumCpus[2] = 1 +
47, 5 ∗ (4− 2)

50
= 2, 9 ≈ 3

The new distribution is 1 thread for the MPI process 1 and 3 threads for
the MPI process 2. Giving more resources to the MPI process 2 will allow a
more balanced execution and better performance.

6.1.2 Study of DWB Limits

During the performance evaluation of the DWB algorithm, we detected two
important limitations. On the one hand, the application must present an it-
erative pattern and imbalance that is constant during the different iterations.
On the other hand, the performance obtained by the algorithm depends on
whether the load balance of the iteration can be matched to a distribution
of CPUS with the total number of CPUs in the node.

A small number of CPUs in the node offers a low granularity to solve
load imbalance problems. When we are running on a node with 4 CPUs,
moving a CPU from one process to another is equivalent to moving 25% of
the resources. If the load imbalance is less that 25% we will not be able to
improve the performance of this application.

To understand better the extent of this limitation we did an extensive
study. The full results of this study can be found in Appendix A. Here we
are going summarize the main results of this study.

All the results presented in this study are synthetic. They have been ob-
tained by numerical computations, not actual executions. Supposing we have
an application running with 2 MPI processes, we computed the maximum
efficiency that it could get when using DWB algorithm. It is the maximum
because we will suppose an ideal environment and parallelization.

We will use Efficiency as the metric to measure the performance of the
DWB algorithm. Efficiency is the percentage of CPU time that the appli-
cation is using for useful computations (not waiting due to load imbalance).
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And it is computed with the following formula:

Efficiency =

∑numMPIs
x=1 (ComputeT imex)

MaxnumMPIs
x=1 (ComputeT imex) ∗ numCpus

∗ 100

We will see the efficiency obtained respect the difference in load between
the two MPI processes. This difference is measured as a percentage that goes
from 1% to 50%. This percentage represents the computational load of the
first MPI process respect to the load of the whole application. As we will
study applications with 2 MPI processes percentages going from 51% to 99%
are redundant.

In Figure 6.3 we can see the efficiency that can be obtained with a different
number of CPUs per node for the different load imbalances when using DWB,
always with 2 MPI processes. The different load imbalances are represented
in the X axis as the percentage of load of the first MPI process (MPI 1).

Figure 6.3(a) is the situation with 2 CPUs per node where DWB can not
be applied (because each MPI process must have at least one CPU), in this
case, the efficiency is only affected by the imbalance of the application. Note
that a load of MPI 1 of 1% obtains an efficiency of 50%, this means that the
application is using 50% of the resources efficiently. The other extreme is
an MPI 1 load of 50%; that obtains an efficiency of 100%. This case is the
baseline as this would be the efficiency obtained in all the situations when
not using DWB.

In Figure 6.3(b), the case with 4 CPUs per node, the efficiency has a new
high peak, this peak corresponds to the perfect case for a distribution of 1-3
CPUs (a load of 25% for MPI 1). We can see how DWB can only improve
the performance of the base case (Figure 6.3(a)) around this peak, for all the
other loads DWB is not able to improve the efficiency of the execution.

We can see Figures 6.3(c) (8 CPUs per node) and 6.3(d) (16 CPUs per
node) to evaluate the impact of the number of CPUs in the efficiency obtained
with DWB. At least 16 CPUs per node are necessary to get an 85% or more
efficiency with all the load imbalances.

6.1.3 Conclusions for DWB

In this section we have seen how the DWB algorithm works and its imple-
mentation within the DLB library.

We have also seen that this algorithm presents two main limitations:
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Figure 6.3: Efficiency that can be obtained from the execution of 2 MPI
processes with different number of CPUs per node
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• Depends on the granularity of the resources: In the synthetic
study presented in the previous section we have seen that the perfor-
mance that can be achieved with DWB algorithm is strongly dependent
on the number of CPUs available in the node.

• Needs an iterative pattern: Needs the application to be iterative,
and to present a consistent imbalance across the different iterations.
Because the redistribution of CPUs is based on measurements of the
previous iterations.
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6.2 LeWI: Lend When Idle

6.2.1 Algorithm

The new balancing algorithm we are presenting appears from the need to
overcome the limitations discovered in the DWB algorithm.

The idea is based on the following observation: the imbalance between
MPI processes implies that one (or more) process is blocked waiting for oth-
ers. And while a process is blocked in an MPI call the CPUs it has assigned
to run are idle.

The target of LeWI is to use the computational power of the idle CPUs
to help the processes with a higher load finish faster.

The central idea of the LeWI algorithm is to lend the threads (CPUs)
on the second level of parallelism of an MPI process while it is waiting on
a blocking call to another MPI process running on the same node that is
still doing computation. This will allow a load balancing at a more fine
granularity.

(a) Imbalanced MPI application (b) MPI application balanced with LeWI

Figure 6.4: Example of LeWI algorithm
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When the MPI process that has lent the CPUs gets out of the blocking
call, it will recover its CPUs, and the process that was using them will be
notified to stop using the lent threads.

In Figure 6.4 we can see an example about how the algorithm works. In
the example, the application is running on a node with 4 CPUs. It starts two
MPI processes on the same node, and each MPI process spawns 2 OpenMP
threads. In Figure 6.4(a) we can see the behavior of an imbalanced appli-
cation. On the other side Figure 6.4(b) shows the execution of the same
application with the DLB library and the LeWI algorithm. We can see
that when the MPI process 1 gets into the blocking call it will lend its two
OpenMP threads to the MPI process 2. The second MPI process will use the
newly acquired CPUs as soon as the programming model allows it. When
the MPI process 1 gets out of the blocking call it retrieves its CPUs from the
MPI process 2 and the execution continues with a CPU equipartition until
another blocking call is met

The LeWI algorithm is entirely distributed and asynchronous. Each pro-
cess will lend its resources when it is not using them to the system. And
when a process can use more resources than its own will ask the system if
there are idle resources. The first process that can use the resources will be
the one to acquire them.

6.2.2 Study of LeWI Limits

The LeWI algorithm does not present any of the limitations detected in
DWB. LeWI can solve imbalances in irregular applications because it does
not depend on previous iterations. It can handle fine-grained load imbalances
as it does not rely on the number of CPUs available in the node.

We are going to study the impact of the number of parallel regions be-
tween MPI calls in the performance of LeWI. This limitation is not inherent
to the algorithm but derived from using the parallel programming model
OpenMP. OpenMP only allows changing the number of threads outside a
parallel region. LeWI relies on changing the number of threads to improve
the performance and load balance, for this reason, the number of parallel
regions can affect the performance of LeWI directly.
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The second factor we are going to analyze is the granularity of the parallel
regions. We want to see how LeWI can manage very fine-grained parallel
loops when load balancing an application.

In this study, we are going to see the performance when using OpenMP.
The conclusions of this study are the motivation to use other programming
models more malleable, such as SmpSs or OmpSs, that we will present in the
following chapter.

The data presented in this section is a summary of the conclusions ob-
tained in the study of limits made for LeWI. The full documentation of this
study can be found in Appendix B.

All the results shown in this section have been obtained using the syn-
thetic benchmark PILS (see Section 3.1). The experiments have been exe-
cuted in Marenostrum2 (4 CPUs per node) with 2 MPI processes.
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Figure 6.5: Execution time 1 to 8 loops of PILS with LeWI versus original
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In Figure 6.5 we can see the impact of the number of parallel regions
in the execution time. In the X axis, we can see the number of loops in
which the load is divided (1 to 8). And on a smaller scale for each number
of loops the % of imbalance present in the application (1% to 50%). In the
Y axis is represented the execution time of the application in seconds. All
the executions had the same amount of computation but distributed in a
different number of parallel loops, and between the two MPI processes.

We can see how the execution time of the application without LeWI is not
affected by the distribution of loops; we can see the same pattern repeated
for the different number of loops. With LeWI, we can see that the case of
just one parallel loop the performance is the same as the original, this is
because there is no malleability in the application for LeWI to improve the
load balance. For the other number of parallel loops, we can see how when
using LeWI the execution time decreases as the number of loops increase.
From this study, we conclude that at least 4 parallel regions must open and
close between MPI blocking calls to allow an efficient load balance of the
application.

Number of parallel loops

Class 1 2 4 8 16

A 332 166 83 41 21

B 663 332 166 83 41

C 1326 663 331 166 83

D 2653 1326 663 332 166

E 5305 2652 1326 663 331

F 10607 5303 2652 1326 663

G 21216 10610 5304 2651 1326

Table 6.1: Duration of each loop in ms of PILS depending on the class and
the number of loops

To analyze the impact of the granularity of the computation in LeWI we
have defined different classes of loads for PILS. A class represents a problem
size, the load of each class is always the same independently of the num-
ber of loops. This means that the same class with more loops has a lower
granularity.
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In Table 6.1 we can find the duration in milliseconds of each parallel loop
for each class when executed in sequential.
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Figure 6.6: Speed up with LeWI classes A, B, C, D, E, F and G

In Figure 6.6 we can see the results obtained with the different classes run
with LeWI. In the Y axis, we can see the speed up respect to the sequential
execution of the same problem size. In the X axis, there is the load of the
MPI process 1 (from 1% to 50%) and the number of parallel loops (from 1
to 8).

We observe that the performance is degraded with fine granularities. The
threshold seems to be around 166ms of workload per parallel loop. This
corresponds to class D with 16 loops or class C with 8 loops among others.
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6.3 Load Balancing Policies Evaluation

In this section, we evaluate the performance of the two algorithms presented
in the previous sections (DWB and LeWI) and the DLB library. For this
evaluation, we will use different benchmarks and applications parallelized
using MPI+OpenMP.

6.3.1 Environment

All the experiments have been executed in Marenostrum2. Marenostrum2
nodes have two processors with two cores each and 8Gb of shared memory.
This means that we have nodes of 4 cores with shared memory.

We have used the MPICH library as the underlying MPI Runtime and the
IBM XL C/C++ version 8.0 compiler without optimization. The operating
system is a Linux 2.6.5-7.244-pseries64.

6.3.2 Methodology

We have executed the experiments with three different configurations of MPI
processes and OpenMP threads per node. As we are running on nodes with
4 cores the possible combinations are the following:

• 1 MPI process per node with 4 OpenMP threads: This is the traditional
configuration for hybrid applications. Our runtime can not improve the
performance with this configuration because there is just one MPI per
node. We show it just to compare the performance and to check that
there is no overhead introduced.

• 2 MPI processes per node with 2 OpenMP threads.

• 4 MPI processes per node with 1 OpenMP thread: This configuration
uses the second level of parallelism just to balance the outer one with
the DLB library. In this case, the DWB algorithm is not able to improve
the performance as the algorithm is limited to give at least one OpenMP
thread per process.

In each experiment we are executing each of the three configurations with
four versions:
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• ORIG: The original application.

• DWB: The application with DLB and DWB algorithm.

• LeWI: The application with DLB and LeWI algorithm.

• OS: The original application with 4 threads OpenMP per MPI pro-
cess. In this case, we overload the node and leave the responsibility
of balancing to the operating system scheduler. With this version, we
need to use a guided schedule for OpenMP (in all the other cases we
are using a static schedule without chunk).

We have divided the experiments into two main types, running in a single
node or running on several nodes. We executed 5 times each test and we show
the average obtained.

We use the speed up to compare the performance of each experiment.
The speed up is calculated as serial time

execution time where the serial time is the time
that took the application to finish with one MPI process and 1 OpenMP
thread; we use this time because in most of the cases we do not have a serial
version of the application to run.

In all the charts the speed up is shown on the y axis. On the x axis are
represented the different configurations (explained above) as the number of
MPI processes per node and the number of OpenMP threads per MPI process
at the beginning of the execution. The series labeled as ORIG correspond
to the original application. The DWB and LeWI series are executions with
DLB and the corresponding balancing algorithm. And the series marked
OS represent the performance obtained when leaving the responsibility to
balance to the Operating System Scheduler.

6.3.3 Running in a single node

As we have seen the DLB library is intended to balance the MPI processes
running on the same node. Therefore our most significant contribution can
be seen when running an application on a single node. In this section, we
show the speed up obtained by some applications when running on a single
node (4 cores).

Figure 6.7 shows the speed up obtained for the BT-MZ application. This
application is very imbalanced but at the same time presents a very regular
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Figure 6.7: BT-MZ Class A in one node (4 cores)

imbalance that it is maintained during all it execution. We can see that the
more MPI processes used the worst performance obtained with the original
application. This is because the imbalance increases with the number of MPI
processes.

When using DLB with the LeWI algorithm, the performance improves as
we increase the number of MPIs per node. The best performance is obtained
with 4 MPIs per node with the LeWI algorithm. It improves by 13% the
speed up with respect to the original application with the traditional con-
figuration of 1 MPI per node. Compared to the original application when
running with 4 MPIs per node LeWI obtains a 64% of improvement.

In the BT-MZ application when running with two MPIs per node the
performance of DWB is the same to the one obtained by LeWI. The reason
is that the imbalance in this case corresponds to a perfect partition of the
processors (1-3).

The SP-MZ performance is shown in Figure 6.8. As we said, SP-MZ is a
well balanced application, and we can see that there is no significant overhead
introduced by DLB when using neither DWB nor LeWI. On the other hand,
the use of the OS schedule slows down the application when there is no load
imbalance.

The speed up of the LUB application is shown in Figure 6.9. The imbal-
ance of this application is very irregular because the most loaded MPI process
changes each iteration. In this case, we can see that the LeWI algorithm im-
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Figure 6.8: SP-MZ Class A in one node (4 cores)
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Figure 6.9: LUB in one node (4 cores)
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proves the performance of the application. And again the best performance
is obtained by LeWI running with 4 MPI processes per node. This configura-
tion improves by 27% the speed up of the original application running with
1 MPI process per node. The DWB algorithm, on the other hand, is not
able to improve the performance of the original application because one of
the limitations of this algorithm is that it needs the same imbalance during
successive iterations.
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Figure 6.10: FLOWer in one node (4 cores)

We can see the performance results for the FLOWer application in Figure
6.10 when running with 1, 2 or 4 MPI processes. When running with 4 MPI
processes, LeWI improves the performance by 9% with respect to the original
application with 1 MPI process per node and a 4,5% respect the original
application running with 4 MPI processes per node. Running with less than
8 MPI processes this application does not present a significant imbalance.

6.3.4 Running in several nodes

Although our library can only balance processes running on the same node,
we have seen that we can improve the global performance of applications
running on several nodes just balancing the processes within a node.

In Figure 6.11 and 6.12 we can see the speed up obtained with the BT-MZ
and the SP-MZ applications when running on 2 nodes (8 cores). The results
of LeWI are similar to the ones obtained when running on one node, but
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Figure 6.11: BT-MZ Class A in two nodes (8 cores)
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Figure 6.12: SP-MZ Class A in two nodes (8 cores)

79



Chapter 6. Load Balancing Algorithms

less speed up is achieved because we can only balance the processes running
on the same node. Even so, we improve the global performance of the BT-
MZ original application while no overhead is introduced in the execution of
the SP-MZ application. As we can not migrate processes across nodes in
the current implementation, in the case of BT-MZ, to show the potential of
DLB, we have mapped high loaded processes and light loaded ones in the
same node.

In the case of BT-MZ, LeWI running with 2 MPIs per node increases
the speed up by 31% respect to the original execution with 1 MPI per node.
DWB improves the performance by 14% when running with 2 MPIs per
node respect to the original application with 1 MPI per node. DWB per-
forms worst because the level of imbalance does not correspond to any exact
thread redistribution (this is due to the granularity limitation we explained
in Section 6.1.2).
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Figure 6.13: FLOWer in four nodes (16 cores)

We have executed the FLOWer application in 4 and 6 nodes, and we can
see the results obtained in Figures 6.13 and 6.14. As we said, the imbalance of
this application increases as the number of MPI processes increase. Therefore
the performance drops as we increase the number of MPIs per node. We
can see that the LeWI algorithm can still improve the performance of the
application when running with 2 MPIs per node or 4 MPIs per node. The best
execution of LeWI is a 2,5% better than the best execution of the original
application.
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Figure 6.14: FLOWer in six nodes (24 cores)

It is interesting to see how in Figure 6.13 when running in four nodes the
LeWI algorithm obtains a better performance when running with 2 MPIs
per node than when running the original application with 1 MPI per node.
This means that it is achieving a better performance than a less unbalanced
execution.

6.3.5 Conclusions

In the performance evaluation section, we have shown that with DLB and the
LeWI algorithm we can balance hybrid MPI+OpenMP applications. We can
attack the load imbalance of regular and irregular applications. Moreover,
we can use it with applications with an unknown pattern of imbalance (or
even balanced applications), and it will improve its performance or at least
will not introduce overhead.

We have seen that the LeWI algorithm outperforms in almost all the cases
the DWB algorithm. Because LeWI does not suffer from the limitations that
have the DWB and can balance applications with different levels of imbalance
or very irregular.

And last, but not least we have been able to improve the global perfor-
mance of applications running on several nodes just balancing the processes
inside the nodes.
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Chapter7
Advanced Load Balancing
With LeWI

In this chapter, we are going to analyze in detail different factors that can af-
fect the load balancing of hybrid applications and especially when using DLB
and LeWI. We will study the impact of the malleability of the programming
model in the inner level of parallelism. The distribution of the MPI processes
among the computation nodes and the binding of threads to cores.

7.1 Impact of Programming Model Malleability

One of the strengths of the LeWI algorithm is its flexibility to solve different
load imbalance problems. But at the same time, we have seen that malleabil-
ity of the programming model that is being used affects the performance that
can be obtained with LeWI.

In Section 6.2.2 we analyzed how the performance of LeWI was affected
depending on the malleability of the application when using OpenMP (in
Appendix B an extended study can be found).

But the limitation comes from the constraint in the malleability of the
OpenMP programming model (OpenMP only allows to change the number
of threads outside a parallel region). This means that when an MPI process
lends its CPUs the MPI process that wants to use them is not able to do so
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until reaching a new parallel region (i.e. the number of OpenMP threads can
only be changed before spawning a parallel region). This is shown in Figure
7.1(a); when MPI 0 lends its CPUs to MPI 1, MPI process 1 is already
executing its second parallel loop. Therefore, MPI 1 is not able to use the
lent CPUs until the third loop starts.

(a) Balancing OpenMP application with
LeWI

(b) Balancing SmpSs application with
LeWI

Figure 7.1: Example of LeWI algorithm with OpenMP and SmpSs

This limitation makes the performance of the algorithm highly dependent
on the number of parallel regions that the application presents between MPI
blocking calls. I.e. if there is just one parallel loop between MPI blocking
calls we can not change the number of threads, therefore, the application can
not be balanced, and the performance can not be improved).

This limitation was not inherent to the algorithm but introduced by the
programming model used (in this case OpenMP). To overcome this limitation
we chose a shared memory programming model that allowed us to change
the number of threads at any time, such as SMPSuperscalar (SmpSs). In
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SMPSuperscalar there is not the concept of parallel region when there is
work to do the threads are always running.

In Figure 7.1 we show the difference between using OpenMP or SmpSs
when running with LeWI algorithm and how it can impact the performance.
Figure 7.1(a) shows the limitation in OpenMP that can not start to use the
threads until it reaches a new parallel region. In Figure 7.1(b) we can see how
SmpSs can start to use the new threads as soon as they are available. This
example shows us how the performance can be improved by a programming
model that offers a higher malleability.

7.1.1 Performance Evaluation

In this section, we are going to evaluate the impact of the malleability of the
programming model in the performance of LeWI. We are going to compare
the two programming models OpenMP and SmpSs when using LeWI.

Environment and Methodolody

The experiments have been executed on Marenostrum2. Marenostrum2 has
nodes of 4 cores with shared memory.

We have used the MPICH library as the underlying MPI runtime, and
the operating system is a Linux 2.6.5-7.244-pseries64. The OpenMP compiler
used is IBM XL version 10.1. SmpSs version used is 2.0.

In this section, we will use the speed up to compare the performance
of each experiment. The speed up has been computed as the serial time
divided by the parallel execution time. Each value is the average of 5 identical
executions.

The serial time used to compute the speed up is the execution time of the
MPI only version of the application executed with a single MPI process. We
are using the MPI version with one MPI process and not the serial version
of the application because we want to focus on the performance obtained
by the inner programming model, in our case OpenMP or SmpSs. By using
this baseline, we exclude from the computation of the speed up the overhead
introduced by the MPI runtime.

We will see experiments executed with 2 and 4 MPIs processes per node.
In the case of 4 MPI processes per node the second level of parallelism is only
used for load balancing purposes.
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In the following charts, we will be comparing four series for each applica-
tion. Their meaning is as follows:

OpenMP: Execution of the MPI+OpenMP application without any load
balancing.

OpenMP + LeWI: Execution of the MPI+OpenMP application with the
DLB library and LeWI for load balancing.

SmpSs: Execution of the MPI+SmpSs application without any load balanc-
ing.

SmpSs + LeWI: Execution of the MPI+SmpSs application with DLB and
LeWI for load balancing.

For this evaluation, we have used the synthetic benchmark PILS, LUB
and BT-MZ (from NAS benchmarks).

PILS

In the following experiments, we have executed PILS (synthetic benchmark
explained in Section 3.1) with the parameter iterations always 1 and paral-
lelism grain from 0.1 to 1. The parallelism grain represents the percentage
of computation that can run in parallel between MPI synchronizations. It is
computed as the reciprocal of the number of parallel regions between MPI
blocking calls (Par.Grain = 1

Par.Regions).
In Figure 7.2 we can see the speed up obtained for PILS when running

with 2 MPI processes on the same node. We executed with four different
workloads that go from a very imbalanced application (10-90) to an almost
well balanced application (40-60). In the X axis we can see the parallelism
grain and in the Y axis, the speed up obtained.

Comparing the series SmpSs and OpenMP we can see that when running
the application without load balancing their performance is the same. There-
fore the differences we will see when running with the LeWI load balancing
algorithm do not come from the parallelization itself.

When comparing the performance of LeWI, we can see that the perfor-
mance of OpenMP version depends on the parallelism grain (series OpenMP
+ LeWI ). While the SmpSs version is not affected by the parallelism grain
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Figure 7.2: PILS 2 MPIs per Node. Malleability impact in performance
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nor the load balance of the execution (series SmpSs-LeWI) obtaining almost
the maximum speed up for all the cases.

Figure 7.3 shows the performance of PILS when running with 4 MPI pro-
cesses on the same node. In this case, we can see 6 different workloads with
varying levels of imbalance between the MPI processes. Again the original
executions without LeWI of the two models have the same performance (se-
ries SmpSs and OpenMP). But when running with LeWI, we can see how
SmpSs performs much better. While SmpSs with LeWI can obtain an almost
ideal speed up for all the configurations, OpenMP depends on the Parallelism
Grain and hardly ever can reach the same performance as SmpSs.

LUB and BT-MZ

We have also used LUB and BT-MZ to evaluate the impact of the program-
ming model malleability in the performance of LeWI. We have changed the
parallelization of both applications to use SmpSs instead of OpenMP.

For the LUB application, we defined each one of the operations performed
on the blocks (lu, fwd, bdiv, bmod) as tasks with the corresponding depen-
dencies to ensure the correct execution. In the experiments, we have worked
with a matrix of 5000 x 5000 elements with a block size of 300 x 300 elements.

For the BT-MZ NAS-benchmark, the code was modified to be parallelized
with SmpSs but following the same structure as the OpenMP version. We
will show the performance obtained when running class C.

In Figure 7.4 we can see the performance obtained when running LUB
in 1, 2 and 4 nodes of Marenostrum2 (4 cores per node). We have executed
with 1, 2 or 4 MPI processes on the same node. The execution with 1 MPI
process per node is shown just for reference as LeWI can not be applied.

We can see how the versions without load balancing (OpenMP and
SmpSs) have a moderately different performance, especially when running
one MPI process per node with 4 threads (20% to 24% better SmpSs than
OpenMP). When running 2 MPI processes per node the improvement of
SmpSs respect OpenMP is between 7% and 10%. This is because the paral-
lelization of the algorithm with tasks and dependencies is more efficient than
OpenMP because it can exploit better the parallelism. But when running
with 4 MPI processes per node and just one thread per process, the second
level of parallelism (OpenMP or SmpSs) is not used, and their performance
is the same.
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Figure 7.3: PILS 4 MPIs per Node. Malleability impact in performance
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Figure 7.4: LUB in Marenostrum2. Malleability impact in LeWI performance
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The execution with LeWI algorithm always improves the execution with-
out load balancing (except when running just one MPI process per node that
it does not degrade it). If we compare the performance of LeWI when using
OpenMP or SmpSs, we can see that the performance is always better when
using SmpSs and LeWI. In one node the SmpSs with LeWI is 19% and 14%
better than OpenMP with LeWI, with 2 and 4 MPIs per node respectively.
When running in 2 and 4 nodes the performance of SmpSs with LeWI is 12%
better than OpenMP 2 MPIs per node and 6% better with 4 MPIs per node.

In Figure 7.5 we can see the performance obtained with BT-MZ when
running in 1, 2 and 4 nodes of Marenostrum2. We have also executed with 1,
2 and 4 MPI processes per node and 4, 2 and 1 thread per process respectively.
When comparing the executions without load balancing, we can see that
SmpSs performs slightly better than OpenMP, around 7% better in all the
cases.

Looking at the executions with LeWI we see that in all the cases it im-
proves the performance of the original application. But the best performance
is always obtained by the SmpSs version with LeWI. The improvements of
LeWI with the SmpSs version respect the execution with LeWI, and the
OpenMP version is around 12%-14%.

7.1.2 Extensive Performance Evaluation and Modeling Ap-
plications Characteristics that Limit LeWI Perfor-
mance

In this section we are going to use the following two metrics:

• Efficiency: Percentage of the CPU time consumed that is running
pure application code. We understand by pure application code the
code inside the application, not including runtime overheads (OpenMP
or SmpSs runtime code) nor MPI calls.

Efficiency = useful cpu time
elapsed time∗CPUs ∗ 100

useful cpu time = cpu time - (MPI time + OpenMP/SmpSs time
+ DLB time)

• Cpus used: Number of CPUs running at the same time pure applica-
tion code.
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Figure 7.5: BT-MZ in Marenostrum2. Malleability impact in LeWI perfor-
mance
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Speed up evaluates how well the application is running compared to the
baseline version (usually sequential version). Efficiency (and CPUs used)
evaluates how close (or far) is the utilization of resources from the desired
one (100%).

The Efficiency and Cpus used have been computed from a trace of an
execution. The trace has been obtained using the Extrae library [32] and
analyzed with Paraver [33].
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Figure 7.6: LUB Efficiency and CPUs used

Figure 7.6 shows two charts obtained from executions of LUB in one node
with 4 MPI processes. Figure 7.6(a) shows the Efficiency of the execution
(percentage of time that the CPUs were used to do useful work). We can
see that the efficiency obtained by the application without load balancing is
around 70% in both programming models (OpenMP and SmpSs). Also, the
distribution of time that the application is using the CPUS (Figure 7.6(b))
is similar for both executions.

When using LeWI the efficiency obtained by the OpenMP version is a 10%
lower than the SmpSs. This difference can be seen in the number of CPUs
used. When running with SmpSs and LeWI almost 95% of the time the
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application uses the 4 CPUs available while in the execution with OpenMP
and LeWI, the four CPUs are used 71% of the time. The efficiency obtained
by LUB with LeWI is close to the ideal.
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Figure 7.7: BT-MZ Efficiency and CPUs used, class A in 1 node with 4 MPI
processes

In Figure 7.7 we can see two charts both obtained from real executions
of BT-MZ in one node, with 4 MPI processes and class A. Figure 7.7(a)
shows the efficiency achieved with every combination of programming models
and load balancing. In Figure 7.7(b), we see the execution time of each
combination and amount of time that was running with the different number
of CPUs (number of concurrent threads).

We can see that the efficiency obtained by BT-MZ is lower than the one
achieved by LUB. When running the application without load balancing the
efficiency obtained is around 50% (the application is wasting a half of the
computational resources it is given to run). Looking at Figure 7.7(b) we can
see that 73% of the time the BT-MZ application with OpenMP is using just
2 CPUs. In the case of SmpSs the distribution of cups used is different, a
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40% of the time the application runs with just one CPU and 27% of the time
it runs with 2 CPUs.

The execution of BT-MZ with LeWI improve the efficiency in both pro-
gramming models but not at the same level. The OpenMP version with
LeWI achieves a 76% of efficiency while the SmpSs version with LeWI can
reach an 87% of efficiency. This difference can also be seen in the used CPUs,
although LeWI makes a better use of the CPUs in both cases, only in the
SmpSs version, it can obtain a 66% of the time running with the 4 CPUs.

We have seen that LeWI improves the efficient use of resources, but not
always get an efficiency close to the ideal. To evaluate if the efficiency loss
is bounded to the malleability of the application we will analyze two charac-
teristics of the application evaluated:

• Parallelism Grain in OpenMP applications: In OpenMP applications,
parallelism grain indicates the malleability in the number of threads
that an application allows. The more parallelism grain, the fewer mal-
leability.

• Task duration in SmpSs applications: The task duration in SmpSs
applications can limit the malleability of the application, coarse grain
tasks imply less malleability.

In this section, we are going to quantify these characteristics in the ap-
plications and reproduce them in PILS (the synthetic benchmark), to finally,
confirm its impact in the performance.

Parallelism Grain impact in OpenMP Applications

Parallelism grain represents the percentage of computation that is run in
parallel between MPI synchronizations. It is computed as the reciprocal of
the number of parallel regions between MPI blocking calls (Par.Grain =

1
Par.Regions). As an example, a parallelism grain of 0.25 corresponds to 4
parallel regions between MPI calls and a parallelism grain of 1 represents a
single parallel region between MPI synchronizations.

We analyzed the parallelism grain in LUB and BT-MZ applications and
presented it in Figure 7.8 (This data was obtained from Paraver trace of a
real execution). In the X axis, we can see the parallelism grain that goes
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Figure 7.8: Parallelism grain of LUB and BT-MZ

from 0 to 0.28 and in the Y axis the percentage of time that this parallelism
grain appears during the execution of the application (frequency).

In the case of LUB, we can see that most of the parallel time it has a
parallelism grain of 0.16 and in general, it goes from 0.14 to 0.28. BT-MZ
presents a lower parallelism grain that is distributed between 0.01 and 0.13.
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Figure 7.9: PILS efficiency with LeWI depending on parallelism grain

In Figure 7.9 we show the Efficiency obtained with PILS when using LeWI
with a parallelism grain similar to the ones observed in the applications.
The different series presented show different load distributions between MPI
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processes and the average between them. We can see that the efficiency
obtained by PILS still depends a lot on the load distribution between MPI
processes although the average efficiency decreases as the parallelism grain
increases.

In the case of LUB, we can simplify that the parallelism grain is around
0.15 and if we remember the efficiency obtained with LUB with LeWI it was
88%. We can see that, for some load distributions, this efficiency corresponds
with the one obtained with PILS. We cannot match LUB with any load dis-
tribution because this application presents dynamic load distribution during
the execution.

The parallelism grain in BT is distributed between less than 0.01 and
0.13; this is because there are different regions of code that present different
parallelism grain inside the application. Therefore, it will be harder to match
with the PILS results. On the other hand, BT-MZ has a quite fixed load
distribution between MPI processes that is stable for the whole execution of
the application. The approximate load distribution, when running with 4
MPI processes, is 9-16-28-47 respectively which would be between the 5-17-
18-60 and 10-20-30-40 distributions of PILS. The efficiency obtained by BT
in the previous section was 76% which would be an efficiency close to the
average one achieved with 5-17-18-60 distribution.

Task duration impact in SmpSs Applications

The task duration in SmpSs is analogous to the parallelism grain in OpenMP
applications. We need to find the trade off between tasks big enough not to
introduce much overhead and sufficiently small to have enough flexibility to
load balance the execution.

Figure 7.10 shows the duration of tasks in microseconds of LUB and BT-
MZ (in 1 node with 4 MPIs for both applications). In the X axis, we show the
task duration in microseconds (be aware that the scale is not contiguous to
show relevant values) each point of the scale represents a range starting with
the labeled number (i.e. the label 0 corresponds to task duration between
0 and 100 microseconds). In the Y axis, we can see the percentage of time
represented by the tasks with this duration.

The duration of BT-MZ tasks varies from less than 100 microseconds
to 1000 microsecond. LUB has a more coarse grain task duration between
222000 and 223000 microseconds.
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Figure 7.11: PILS efficiency depending on the task duration

98



7.1. Impact of Programming Model Malleability

We can compare the efficiency obtained with PILS when running with
similar task durations in Figure 7.11. We present the results in three different
charts for clarity. In the X axis, we can see the task duration in microseconds
(from 0.1 to 100 microseconds in the first one, from 100 to 1000 microseconds
in the second one and from 1000 to 10000 microseconds the third). The Y
axis shows the efficiency obtained. We can see that the efficiency increases
with the task duration and the optimum are reached with task duration of
around 4000 microseconds getting an efficiency of 98%.

Now we will compare the efficiency obtained by BT-MZ with the re-
sults obtained with PILS. The duration of BT-MZ tasks was between 100
microseconds and 1000 microseconds, and the efficiency achieved was 87%.
This efficiency corresponds to the average efficiency obtained by PILS with
tasks between 100 and 900 microseconds. This means that most of the effi-
ciency lost by BT-MZ is due to the granularity of its tasks.

In the case of LUB, the efficiency shown in the previous section for the
SmpSs version when running with LeWI was 97%, and the duration of its
tasks are around 222000 microseconds, which is the maximum obtained by
PILS for tasks of 4000 microseconds or more. We can say that the SmpSs
version of LUB reaches the maximum efficiency possible when running with
LeWI.

7.1.3 Conclusions of the Impact of Programming Model Mal-
leability

We have seen that LeWI relies on the malleability of the programming mode
and the more malleable it is, the better performance LeWI will obtain.

From the evaluation performed we can conclude that the malleability of
the programming model is crucial. But does not mean that LeWI can not
speed up applications with OpenMP, but in those cases, the performance will
also be affected by the malleability of the application and its load imbalance.

Regarding the malleability in the application, for MPI+OpenMP appli-
cations we have seen that the number of parallel loops can affect the per-
formance of LeWI and that it is highly correlated with the amount of load
imbalance. Our experiments showed that in general to obtain an efficiency
between 80% and 85% we need a parallelism grain of 0.15 (equivalent to 6
parallel loops between MPI calls). We have shown that the original efficiency
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of LUB was 69%, it was increased to 88% using LeWI. Our recommendation
is to have a parallel grain below 0.1 even when that can seem to be self-
defeating, we have demonstrated that when using LeWI the application will
obtain a better performance.

For MPI+SmpSs applications, the trade-off is in the granularity of the
tasks. In this case, we have seen that we need tasks of at least 500 microsec-
onds of duration to obtain an efficiency above the 80%. The programming
model can handle tasks of less than 100 microseconds and still achieve a good
efficiency, but it would be recommendable to have tasks of more than 500
microseconds of duration.
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7.2 MPIs distribution among nodes

When analyzing the efficiency obtained by applications running on several
nodes with DLB and LeWI, we identified the distribution of MPI processes
among nodes as a factor that can affect the performance. As DLB can only
load balance processes running in the same shared memory node, the per-
formance it can achieve depends on the load imbalance between nodes. The
better load balance between nodes the better performance LeWI will obtain.

The distribution of MPI processes between nodes is not a parallelization
decision but an execution decision. This makes it easy to change and as we
will see it has a substantial impact on the efficient use of the resources.

We can classify the load imbalance of applications into three categories:

(a) Triangular (b) Clustered (c) Random

Figure 7.12: Classification of load distribution

Triangular: The load of the MPI processes goes from more loaded processes
to less loaded ones (or vice-versa), Figure 7.12(a).

Clustered: The most loaded processes are consecutive, Figure 7.12(b).
There can be one or more clusters of highly loaded MPI processes.

Random: There is no pattern in the load distribution among MPI processes,
Figure 7.12(c)

By default applications will be executed with consecutive assignment of
MPIs, moreover, the communication pattern of some applications is designed
to work with this kind of distribution. An application running on 3 nodes
with 12 MPI processes will run MPI processes 0, 1, 2 and 3 in node 1; MPI
processes 4, 5, 6, and 7 in node 2 and MPI processes 8, 9, 10 and 11 in node 3.

101



Chapter 7. Advanced Load Balancing With LeWI

(a) Triangular (b) Clustered (c) Random

Figure 7.13: Distribution of MPI processes with a consecutive placement

But this kind of distribution will assign the more loaded processes together
in the same node if the load distribution of the application is triangular or
clustered, as we can see in Figures 7.13(a) and 7.13(b).

(a) Triangular (b) Clustered (c) Random

Figure 7.14: Distribution of MPI processes with a round robin placement

In almost all HPC systems, we can choose a different distribution or even
decide one by hand. An alternative distribution available in almost all the
environments is Round Robin, A Round Robin distribution assigns the MPI
processes in a cyclic way among the nodes. An application running on 3
nodes with 12 MPI processes, will run MPI processes 0, 3, 6 and 9 in node
1 and MPI processes 1, 4, 7 and 10 in node 2 an MPI process 2, 5, 8 and
11 in node 3. As we can see in Figure 7.14 applications with a triangular or
clustered load distribution will usually obtain a more balanced distribution
of loads among nodes with a Round Robin placement.
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7.2.1 Performance Evaluation

In this section, we are going to evaluate the impact of the malleability of the
programming model in the performance of LeWI. We are going to compare
the two programming models OpenMP and SmpSs when using LeWI.

Environment and Methodolody

The experiments have been executed on Marenostrum2 and Marenostrum3.
Marenostrum2 has nodes of 4 cores with shared memory and Marenotrum3
16 cores per node.

The experiments executed in Marenostrum2 use the MPICH library as
the underlying MPI runtime and the OpenMP compiler used is IBM XL
version 10.1. The SmpSs version used is 2.0.

In Marenotrum3 we used the Intel MPI library version 4.1.3 and the
underlying compiler is Intel 13.0.1.

In this section, we will use the execution time to compare the performance
of each experiment. The execution time is the wall time that each application
takes to finish. We will use execution time instead of speed up because for
Gadget and Gromacs is not possible to obtain a serial execution (the data
does not fit in the memory of a single node). For clarity in the section, we
will use the same metric for all the applications. Each value is the average
from 5 identical executions.

In the following charts, we will be comparing four series for each applica-
tion. Their meaning is as follows:

Consecutive: Execution of the application with a consecutive placement of
MPI processes among nodes.

Consecutive + LeWI: Execution of the application with DLB and LeWI
for load balancing and a consecutive placement of MPI processes among
nodes.

Round Robin: Execution of the application with a round robin placement
of MPI processes among nodes.

Round Robin + LeWI: Execution of the application with DLB and LeWI
for load balancing and a round robin placement of MPI processes among
nodes.
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For this evaluation, we have used BT-MZ, Lulesh, Gromacs, and Gadget.
For BT-MZ and Gromacs we are using the MPI+SmpSs version, Gadget use
MPI+OpenMP and Lulesh is parallelized with MPI+OmpSs.

Application
HPC
Server

Program.
model

Nodes CPUs
MPIs

per node

BT-MZ MN2 MPI+SmpSs
2 and

4
8, 16 1, 2 and 4

Lulesh MN3 MPI+OmpSs 4 64 4

Gromacs MN2 MPI+SmpSs

1, 2, 4,
8, 16,

32 and
64

4, 8,
16, 32,
64 and

128

4

Gadget MN2 MPI+OpenMP 200 800 4

Table 7.1: Applications used for evaluation

Each application runs in a different number of nodes depending on its
needs. BT-MZ is the only application that runs with 1, 2 and 4 MPI processes
per node, the case with 1 MPI process per node is shown just for reference
because LeWI can not be applied. Lulesh, Gromacs, and Gadget are always
executed with 4 MPIs per node, because in all of them the parallelization of
the second level is not complete, and is used just for load balancing purposed.
In Table 7.1 we can see a summary of the applications used in this evaluation
and their characteristics.

Results and Discussion

In Figure 7.15 we can see how the distribution of MPI processes affects the
performance of the BT-MZ application when running in 2 and 4 nodes. In
the Y axis, we can see the execution time and in the X axis the different
configurations inside a node (1, 2 or 4 MPIs in the same node). We can
observe that the speed up of the application is much better when running
with LeWI and the Round Robin distribution. It is important to notice
that the executions without load balancing have the same performance with
Consecutive and Round Robin distributions in all the cases. This means
that the communication pattern of this application is not affected by the
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Figure 7.15: BT-MZ in Marenostrum2. MPIs distribution impact in LeWI
performance
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MPI distribution. It is just the automatic load balancing mechanism that is
benefited with the Round Robin distribution.

In the case of running on 2 nodes (Figure 7.15(a)) it is interesting to notice
that the execution time of the application without load balancing increases
with the number of MPIs. But when using LeWI, this trend is reversed, and
the best configuration is running with 4 MPI processes per node and a Round
Robin distribution.
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Figure 7.16: Lulesh in Marenostrum3. MPIs distribution impact in LeWI
performance

In Figure 7.16 the execution time of Lulesh with 64 MPI processes in 4
nodes. In the X axis, we can see the value of the flag that controls the load
imbalance of the application, a higher value of the flag implies a higher load
imbalance of the application. The performance of the application is slightly
affected by the distribution of MPI processes among nodes. The difference in
the performance is less than the 1% in almost all the executions without load
balancing. But when using LeWI the difference in the performance between
a Consecutive or Round Robin placement of MPI processes is around the
1,5%. The speed up obtained with LeWI respect the application without
load balancing goes from 3% to 11% depending on the load imbalance.

The impact of the MPI distribution in the performance of Gromacs can be
seen in Figure 7.17. In this chart in the X axis, we find the number of nodes
used for the execution from 1 to 64 nodes (4 to 256 cores). We can see that,
in this application, the Round Robin distribution is not always beneficial for
the application. This means that the communication pattern in Gromacs is
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affected by the distribution of MPI processes among nodes. The execution
with LeWI always improves the performance of the application. But using a
Round Robin distribution is not the best option in all the cases. The speed
up obtained when running with LeWI is between 37% and 57% in the case
of a consecutive placement of MPI processes and between 36% and 49% for
a Round Robin distribution.
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performance
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In Figure 7.18 we can see the execution time of Gadget with different
MPI distributions with and without load balancing. Gadget, in general,
is not affected by changing the distribution of MPIs, in the details of the
time steps, we can see that some of them are affected negatively and other
positively by a Round Robin distribution, in all the cases the difference is
negligible. The improvement in performance of using LeWI with Gadget
is 55,6% with a Consecutive placement of MPI processes and 55,8% with a
Round Robin distribution.

7.2.2 Conclusions of the Impact of MPIs Distribution Among
Nodes

In the distribution of MPI processes among nodes, we can not conclude that
a universal solution is suitable for all the applications. But we have seen
that is an important topic. The placement of MPI processes could affect the
performance of the application if the communication pattern was designed
for a specific distribution.

In the case of using LeWI, we have seen that the MPIs distribution be-
tween the nodes can have a significant impact on the performance of the
application. In the case of the BT-MZ (4 MPIs per node running in 4 nodes)
the improvement when using LeWI with a Consecutive placement of MPI pro-
cesses was 10%, compared to an improvement of 35% when running LeWI
with a Round Robin distribution.

The effect of the distribution, however, will depend on the load distribu-
tion among processes. For this reason, it is difficult to generalize if changing
the MPI distribution will improve the performance of LeWI. However, usu-
ally the data distribution among MPIs in scientific applications is consecutive
(highly loaded MPI processes are consecutive) for this reason, we can say that
in general a Round Robin distribution of MPI processes obtains better results
than the Consecutive distribution.
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7.3 To bind or not to bind

As we have seen in previous chapters, LeWI is based in lending the CPUs
from a process that is not using it to another one that still has work to do.
In Figure 7.19 we can see the internal behavior of the policy. We have some
DLB data in a shared memory accessible by all the process of the application.
In this shared data we keep the number of idle CPUs at this moment. At
the beginning of the execution, the number of idle CPUs will be 0. When a
process lends its resources to the system, the number of idle CPUs will be
increased accordingly. When a process wants to ask for more resources will
check the number of idle CPUs in the system and decrease it if necessary.

Figure 7.19: LeWI internal behavior

When analyzing some performance results in detail, we detected that
when LeWI changed the number of threads, the threads needed some time to
adjust correctly to the CPUs that were idle. This is because we are relying
on the Operating System (OS) scheduler to assign each thread to an empty
CPU. In Figure 7.20 we can see a trace of an application with 2 MPI processes
and 6 threads each and LeWI. The color of each thread represents the CPU
where it is running. We can see how the new started threads of MPI process
2, when borrowed from MPI process 1, do not use the correct CPU. Instead,
some of the threads start sharing the same CPU (same color at the same
time, marked with circles in the trace).
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Figure 7.20: Trace: example of LeWI and thread assignment to CPUs

To avoid this, we implemented a new version of LeWI based on masks of
CPUs; we will refer to this new policy as LeWI mask. In Figure 7.21 we can
see the behavior of the new policy. In this case, in the shared memory, we
will keep a mask of idle CPUs. When a process lends its resources, it will
give to the system a mask of CPUs to be lent. The mask of idle CPUs will
be updated accordingly. When a process asks for resources, it will be given
a mask of idle CPUs where it can run new threads.

Figure 7.21: LeWI mask internal behavior
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To develop this feature we need support from the runtime in the inner level
of parallelism, in our case OpenMP. The standard OpenMP does not offer
an API to assign threads to specific CPUs. For this reason we implemented
a new API in Nanos++ [22] to change the number of active threads with a
mask of CPUs. The two calls added to the API were the following:

• void nanos omp get process mask ( cpu set t *cpu set );

• int nanos omp set process mask ( const cpu set t *cpu set );

Figure 7.22: Trace: example of LeWI mask and thread assignment to CPUs

In Figure 7.22 we can see a trace of an application with 2 MPI processes,
with 6 threads each, running with LeWI mask. The colors in the trace repre-
sent the CPU where the thread is bound and running. We can see how now
a CPU is not being used by two threads at the same time.

In the following section, we are going to evaluate the performance of
LeWI mask. As we detected that the impact of binding the threads is highly
related to the architecture of the node, we will show the performance obtained
in different kind of nodes.

7.3.1 Performance Evaluation

In this section, we are going to evaluate the impact of binding or not the
threads to CPUs in the performance of LeWI. And how the size of the node
and its memory structure affects the performance.
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Environment and Methodology

The experiments have been executed on Marenostrum3. We have used the
Intel MPI library version 4.1.3, and the underlying compiler used by Mer-
curium is Intel 13.0.1. The experiments shown have been obtained using the
Nanos++ runtime.

In this section, the metric we will use is the speed up respect the serial
execution of the application (we consider the serial execution as the execution
with one MPI process and 1 thread). The values shown for each scenario are
the average of 10 runs.

In this evaluation, we have used the BT-MZ benchmark from the NAS-
MZ benchmark suite and Lulesh. We have executed the BT-MZ with all the
possible combinations of MPI processes and OpenMP threads in one node.
The version of the Lulesh application we are using is not fully parallelized
with OpenMP, the second level of parallelism is only used for load balancing,
for this reason, all the experiments have been done with one thread per MPI
process and filling the nodes with MPI processes. Also, Lulesh can only run
with a certain number of MPI ranks; we have always executed with 64 MPI
processes in total.

Figure 7.23: Marenostrum3 node structure

Each node of Marenos-
trum3 has two sockets of 8
CPUs each, caches L1 and
L2 are local to the CPU,
and L3 is shared for each
socket. A schematic represen-
tation of a Marenostrum3 node
can be seen in Figure 7.23.
To evaluate the impact of the
node size and memory struc-
ture we have emulated differ-
ent nodes sizes using Marenos-
trum3 nodes and limiting the
CPUs that the application can
use. To see the impact of the

memory hierarchy we have selected CPUs from the same socket, calling it
compact or CPUs from both sockets, calling it scatter.
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We have executed in the following 5 different scenarios:

• 4 CPUs Scatter memory: Using only CPUs 1, 2, 9 and 10 of each
node.

• 4 CPUs Compact memory: Using only CPUs 1, 2, 3 and 4 of each
node.

• 8 CPUs Scatter memory: Using only CPUs 1, 2, 3, 4, 9, 10, 11, 12
of each node.

• 8 CPUs Compact memory: Using only CPUs 1, 2, 3, 4, 5, 6, 7 and
8 of each node (socket 1).

• 16 CPUs Scatter memory: Using the whole Marenostrum3 node.

In the following evaluation, we will be comparing four series for each
application. Their meaning is as follows:

• No Binding: Execution of the original application without CPU bind-
ing.

• No Binding + LeWI: Execution of the application without CPU
binding and with DLB and LeWI for load balancing.

• Binding: Execution of the original application with binding of threads
to CPUs.

• Binding + Mask: Execution of the application with binding of
threads to CPUs and with DLB and LeWI mask for load balancing.

Results and Discussion

In Figure 7.24 we can see the speed up obtained by the BT-MZ application
when running in a node of 4 CPUs. In the Y axis, we can see the differ-
ent configurations of MPI processes and threads per process inside the node.
The performance of the original application decreases when increasing the
number of MPI processes because the imbalance increases with the number
of MPI processes. The right hand side chart represent a node with compact
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Figure 7.24: BT-MZ Speed up, class C in 1 node with 4 CPUs

memory (Figure 7.24(a), the left hand side chart is a node with scatter mem-
ory (Figure 7.24(b)). In this case, we can observe that there is no significant
difference in the performance obtained with the two types of memory hier-
archy. In both cases there is no difference between binding or not binding
the threads in the original application or when using DLB with LeWI or
LeWI mask.
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Figure 7.25: BT-MZ Speed up, class C in 1 node with 8 CPUs

Figure 7.25 shows the speed up obtained by BT-MZ in one node with 8
CPUs. In this case, we can see that the original execution is not affected
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by the binding of threads. But when using DLB we can observe that the
speed up obtained is better with LeWI mask than with LeWI. Moreover, the
difference in performance increases with the number of MPI processes per
node.

1

3

5

7

9

11

13

1 MPIs with
 16 threads

2 MPIs with
 8 threads

4 MPIs with
 4 threads

8 MPIs with
 2 threads

16 MPIs with
 1 threads

S
p

ee
d

 u
p

Node Configuration

No Binding

No Binding + LeWI

Binding

Binding + Mask

Figure 7.26: BT-MZ Speed up, class C in 1 node with 16 CPUs

In Figure 7.26 we can see the speed up obtained by BT-MZ in a node with
16 CPUs. We can observe that the performance of the original application
is not affected by the binding of threads, this is because at the beginning
of the execution the OS schedules each thread in one CPU and there are
no migrations. When running with DLB, we can see that using LeWI mask
and binding the threads achieves a better speed up than when using LeWI
without binding the threads. In this case, the threads are going to sleep and
waking up, and the OS scheduler needs to place them in the idle CPUs.

In Figure 7.27 we can see the speed up obtained by Lulesh when running
on 16 nodes with 4 CPUs. In the X axis, we can see different values for
the parameter that controls the amount of load imbalance of the application.
Higher values represent a greater imbalance. In the case of a compact memory
hierarchy we can see that there is almost no difference between binding or
not binding the threads to cores, neither in the original application nor when
using LeWI or LeWI mask. On the other hand, with scatter memory we can
see a significant difference in performance when binding threads to CPUs or
not. The original application benefits from binding threads to CPUs in all
the situations. When using DLB with LeWI and LeWI mask we can see that
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Figure 7.27: Lulesh Speed up, in nodes with 4 CPUs, 64 MPI processes in
16 nodes

the performance of binding the threads to CPUs (LeWI mask) is better than
using LeWI, and the performance gain is higher than the use of binding in
the original application.

1

11

21

31

41

51

61

71

2 4 6 8

S
p

ee
d

 u
p

Load Balance

No Binding No Binding + LeWI
Binding Binding + Mask

(a) Compact

1

11

21

31

41

51

61

71

2 4 6 8

S
p

ee
d

 u
p

Load Balance

No Binding No Binding + LeWI
Binding Binding + Mask

(b) Scatter

Figure 7.28: Lulesh Speed up, in nodes with 8 CPUs, 64 MPI processes in 8
nodes

Figure 7.28 shows the speed up obtained by Lulesh in 8 nodes of 8 CPUs
each. The observations in the case of 8 CPUs per node are very similar to
the ones of 4 CPUs per node. When using a compact memory hierarchy
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the performance is not affected by the binding of the threads to CPUs, not
in the original application, nor when using DLB with LeWI. With a scatter
memory hierarchy the speed up obtained is higher with binding of threads in
both cases. But the benefit in the speed up of binding the threads is greater
when using DLB with LeWI mask.
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Figure 7.29: Lulesh Speed up, in nodes with 16 CPUs, 64 MPI processes in
4 nodes

In Figure 7.29 we can see the speed up obtained in 4 nodes with 16 CPUs
by Lulesh. We can observe that binding the threads to the CPUs improves
the performance of the application and that the improvement is higher when
using DLB with LeWI mask.

7.3.2 Conclusions about to bind or not to bind

In this section, we have evaluated the impact of the binding of threads to
the CPUs when using DLB and LeWI. We have compared the performance
of the original application when binding or not and when using LeWI or
LeWI mask with DLB. For the evaluation, we have used different sizes of
nodes and memory hierarchy.

We have seen that the binding of threads to CPUs affects the performance
of applications, but when using DLB with LeWI the impact is higher. This
is due to the fact that in an execution without DLB the threads are constant
and once they have been assigned to a CPU the Operating System scheduler
does not have reasons to migrate them. When using DLB the threads are
going to sleep and waking up, and when they wake up, they go to the CPU
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where they were running. The operating system scheduler needs some time
to detect the conflict and migrate one of the threads to an idle CPU.

In this evaluation, we have confirmed that the more CPUs in the node,
the more necessary to bind threads to CPUs. Not only when using DLB
but also in executions without DLB the binding is an important performance
factor. Now that the trend is to have bigger nodes this practice is becoming
more common and necessary.

An important factor in the impact of the binding in the performance is
the hierarchy of memory. Having levels of memory that are not shared among
all the CPUs makes binding more important. In this case migrating a thread
from a CPU to another not only penalizes the time it has been sharing the
CPU but also the fact that its data must migrate also.

Finally, we have seen that the number of MPI processes that are running
in the node also have an impact on the performance. The more MPI processes
we are placing in a node, the more performance loss if not using binding of
CPUs when using DLB.

We can conclude that the use of binding of CPUs is necessary both when
using DLB and when not. But especially with DLB, it is important to have
a LeWI mask policy with binding of CPUs to obtain the maximum perfor-
mance.
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Chapter8
Integration with a Parallel
Runtime

In this Section, we will explain the integration of DLB with a parallel runtime,
Nanos++ (see Section 2.1.4), and evaluate its impact on the performance of
LeWI and DLB.

The integration of the DLB library with the Nanos++ runtime will allow
us to have more control over the threads of each process, more access points
to the library and more information about the internal state of the process.

The main advantage of this integration is that the threads will be au-
tonomous to decide when to release its CPU to the system. In situations of
load imbalance within the process or limited parallelism the resources can be
used by other processes.

In Figure 8.1 we can see different examples of situations where we can
benefit from this integration, if there is an imbalance between threads of the
same process, the resources can be used by another process. After the MPI
call we can see a parallel region and in light blue a serial code, in this case,
we can use the resources during the serial phase for another process.

Another advantage of the integration is the increase in the responsiveness
of DLB. For example, when a CPU is claimed by its owner, as soon as the
thread that is borrowing the CPU reaches a safe point it will release the CPU
to its owner. Without the integration, the process had to wait for the master
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(a) Imbalanced
MPI+OmpSs
application

(b) Balancing application with LeWI
and autonomous threads

Figure 8.1: Example of LeWI algorithm with autonomous threads
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thread to finish its task, then it could check if any resource of the process
was claimed, and notify the corresponding thread to sleep, finally when the
thread finished its task would release the claimed resource.

We also have direct information from the runtime that can be used by
DLB. As the runtime knows the amount of parallel work left to do it can
ask for more or fewer resources depending on this information. For example,
if there are 4 idle CPUs in the system and a process has 2 parallel tasks
pending it will ask for 2 CPUs instead of borrowing all of them.

In the following section we are going to explain the technical details of the
integration, and in the next one, we will present the performance evaluation.

8.1 Technical Details

The technical details of the integration are important because we want to
demonstrate that DLB is ready to be used by a parallel runtime. It has also
been important to identify the key points of the parallel runtime that must
be located for the integration.

DLB is integrated with Nanos++ since version 0.7.

The integration maintains the independence between the two runtimes:
DLB and Nanos++. DLB offers an advanced API targeted to parallel run-
times. And the Nanos++ runtime calls the DLB API when necessary.

Nanos++ can be installed with DLB support by adding a flag in the
configuration step to the DLB installation directory. At execution time,
DLB can be enabled with a flag given to the Nanos++ runtime.

We have identified the following key points in the runtime where calls to
the DLB library can be added:

1. When a thread detects that it does not have work left to do.

2. When it is safe for a thread to go to sleep and release its CPU. Usually
after finishing a task (or unit of work).

3. When the process can use more resources than the assigned ones. At
this point, the runtime can tell DLB how many resources it can effi-
ciently use.

4. When it is safe to return resources claimed by other processes.
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Algorithm 2 Integration of DLB in Nanos++

1: while (!queue.IsEmpty()) do
2: if (DLB ReturnClaimedCpu()) then
3: /* Check flag and sleep if necessary */
4: CheckGoToSleepFlag();
5: end if
6: if (queue.size > currentResources) then
7: if (currentResources < defaultResources) then
8: /* Claim muy CPUS */
9: DLB ClaimCpus(queue.size-currentResources);

10: end if
11: end if
12: if (queue.size > currentResources) then
13: /* Ask for more resources if available */
14: DLB UpdateResources(queue.size-currentResources)
15: end if
16: task=queue.getTask();
17: execute(task);
18: end while
19: /* No tasks to execute I release my CPU */
20: DLB ReleaseCpu(myCPU);
21: /* Check flag and sleep if necessary */
22: CheckGoToSleepFlag();
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For points 3 and 4, it is important to locate places in the code that are
not in the critical path and that are executed frequently enough to give an
acceptable response time to changes in the assignment of resources. But at
the same time, they are not called too often to degrade the performance of
the application.

In algorithm 2 we can see a summarized pseudo-code of the integration
between the Nanos++ runtime and DLB. Before starting a new task, a thread
will check if its CPU has been claimed and it has to go to sleep (lines 2 to 4).

If the number of tasks in the queue is greater than the current resources
and the current resources is less than the owned resources by this process it
will claim some CPUs (line 9). If the number of tasks in the queue is greater
than the number of resources it will ask for idle resources to DLB (line 14).

Finally, when there are no tasks left in the queue, the thread will lend its
CPU to the system (line 20), and go to sleep if necessary.

These were the main changes needed in the Nanos++ runtime and what
we learned from it. Now we are going to see what the integration implied
from the point of view of DLB.

The integration of DLB with Nanos++ supposed a significant change in
the philosophy of the library. Up to now only one thread of each MPI process
would enter the DLB library. Therefore a synchronization mechanism was
only necessary between processes. By allowing every thread to call the DLB
library, we needed to add mutual exclusion between them.

The integration has been done with the LeWI algorithm, and although the
main idea is the same, the changes in the code made necessary to implement
a new policy, we will refer to it as auto LeWI (from autonomous threads).

An API for runtimes was added in DLB; it can be found in detail in
Section 5.5.2. We can summarize it in the following points:

1. Release a CPU to the system.

2. Acquire more resources, up to a given maximum.

3. Check if a CPU is claimed, and return it if necessary.

In Figure 8.2 we can see an example of the integration, in this case, we
depict the situation where one thread detects that there is not work to do
and lends its CPU to the DLB system. At this point, it will call the DLB
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Figure 8.2: Diagram of Nanos++ and DLB integration

API DLB ReleaseCpu with the number of CPU where it is running. When
DLB gets this call, first, it will acquire the lock, then it will add the CPU
to the pool of idle CPUs, and finally it will set the new mask (the previous
mask without the lent CPU). To set the new mask, DLB will call the API
offered by the Nanos++ runtime set mask. The set mask call will change
the flags of the threads that must go to sleep and will wake up the threads
that must run according to the information on the new mask. Finally, after
returning from the DLB call, the thread will check its flag to see if he must
go to sleep, and at this point it will sleep and stop consuming CPU.

8.2 Performance Evaluation

8.2.1 Environment and Methodolody

The experiments for this chapter have been executed on Marenostrum3.
Marenotrum3 has nodes of 16 cores with 32Gb of shared memory. We used
the Intel MPI library version 4.1.3 and the underlying compiler is Intel 13.0.1.

The performance metric that we will use is speed up. We have computed
it respect the serial execution with one MPI process and one thread.

In the following charts, we will see three different series of data; their
meaning is as follows:

no DLB: Execution of the original application without load balancing.

LeWI + Mask: Execution of the application with the load balancing algo-
rithm LeWI and using the option of binding threads to cores.
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LeWI + Mask + Auto: Execution of the application with the load bal-
ancing algorithm LeWI, using the option of binding threads to cores
and using the Autonomous threads.

In this evaluation we have used the BT-MZ benchmark from the NAS-MZ
benchmark suite and Lulesh, both of them are hybrid using MPI+OmpSs.
We have executed the BT-MZ with all the possible combinations of MPI
processes and OmpSs threads in one node and classes C and B.

The version of the Lulesh application we are using is not fully parallelized
with OmpSs, the second level of parallelism is only used for load balancing,
for this reason, all the experiments have been done with one thread per MPI
process and filling the nodes with MPI processes. Also, Lulesh can only run
with a certain number of MPI ranks; we have always executed with 64 MPI
processes in total.

8.2.2 Results and Discussion
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Figure 8.3: BT-MZ Speed up in one node (16 cpus)

In Figure 8.3 we can see the speed up obtained by BT-MZ when running
in one node of Marenostrum3 (16 cores) class B and C. In the X axis we can
find the configuration of MPI processes and threads in each node. The mesh
size of class B does not allow a partition in more than 8 MPI processes, for
this reason in the x axis class B only reaches 8 MPI processes per node.
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The speed up obtained by class B can be seen in Figure 8.3(a), when
running without DLB the speed up is around 7 independently of the config-
uration of MPI processes and threads inside the node. When using LeWI
with binding of CPUs (LeWI + Mask), we can see that the performance
improves as the number of MPI increases, because it gives more malleability
to DLB, and the maximum speed up obtained is 11. But when using LeWI
with binding of CPUs and Autonomous threads (LeWI + Mask + Auto), we
can see that the maximum speed up obtained is around 13.

In Figure 8.3(b) we can see the same experiments with class C. We can
observe that the performance of class C is very similar to the performance
of class B when not using DLB. When using LeWI and binding of threads,
the performance increases with the number of MPI processes per node and
obtaining a better performance than class B. In the case of LeWI with binding
and Autonomous threads, the speed up can be increased up to 14.
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Figure 8.4: Lulesh Speed up in 4 nodes (64 cpus)

In Figure 8.4 we can see the speed up obtained with Lulesh when running
in four nodes of Marenostrum3 (64 cores). In the X axis is represented the
load balance flag, this flag can go from 0, well balanced execution, to 8, very
imbalanced execution. Lulesh is only parallelized with OmpSs partially, for
this reason, the execution is done with one thread per MPI process, and the
second level of parallelism (OmpSs) is only used for load balancing.

When running Lulesh without DLB, we can see how the performance de-
creases as the load imbalance increases. When using LeWI with binding of
threads, the speed up is constant independently of the amount of load imbal-
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ance. In the case of LeWI with binding of threads and Autonomous threads,
the speed up is also constant regardless of the amount of load imbalance, and
higher that the obtained without Autonomous threads. We can observe that
the performance achieved with this version is comparable to the performance
obtained with the well balanced application.

It is important to notice that when running with the load balance flag 0
the performance of the Autonomous threads is the same as the execution of
the original application and LeWI without Autonomous threads, this means
that the Autonomous threads do not introduce an additional overhead to the
execution.

8.3 Conclusions

In this chapter we have seen the integration of DLB with a parallel runtime,
for this, we have used the Nanos++ runtime. We have used Nanos++ be-
cause it supports OpenMP (which is widely employed in HPC applications)
and we had the source code and support from the developers.

This integration aimed to prove that DLB is ready to be used by a parallel
runtime and that the effort of integration is worth the benefits that will be
obtained.

We have presented a simple API that can be utilized by parallel runtimes.
With this experience, we have identified the key points that must be located
in the runtime to add the calls to the DLB API.

In the performance evaluation, we have seen that the overhead of the
threads accessing the DLB library is negligible.

We observed that the performance of applications can be improved using
Autonomous threads. The amount of improvement depends on the character-
istics of the application. Not only on the load imbalance but the granularity
of parallel work or the load balance at the second level of parallelism.
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Chapter9
Alya: A Case Study

Alya [46][47][70] is a computational mechanics code developed at BSC. It can
solve different physics problems that include: incompressible/compressible
flow, solid mechanics, chemistry, particle transport, heat transfer or turbu-
lence modeling, among others.

Alya was originally designed and developed for HPC environments, and
it is used in production runs that use thousands of cores during several
hours. Currently, it is part of the UEABS [48] (Unified European Appli-
cations Benchmark Suite), a selection of 12 codes. The selection of these
codes was based on its scalability, portability, and relevance for the scientific
community.

On of the distinctive features of Alya is that it can simulate multiphysics
problems. In this case, the solution can be achieved in a single code or
coupling different instances of Alya, where each instance will solve a different
physic.

The development in Alya pushes into two directions. On the one hand,
research in its numerical methods to perform more precise, faster and more
detailed simulations. On the other hand, its code is constantly optimized to
scale up to thousands of cores in a wide range of supercomputers.

Alya is written in Fortran and organized in modules. Modules can be
compiled and executed independently, and each one solves a physical prob-
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lem. Its main parallelization is done using MPI, but in some of its modules
we can use a hybrid parallelization using MPI+OpenMP.

Alya relies on Metis [1] to partition the input mesh. The original mesh is
partitioned in N subdomains, where N is the number of MPI processes. Each
MPI process will work over its subdomain.

9.1 The Load Balance Problem

While doing the performance analysis of some executions of Alya we detected
several load imbalance problems that were not solved. Moreover, they can-
not be solved with the current tools and mechanisms. These kind of load
balancing problems are not particular to Alya, they are common in this type
of applications. We can categorize the sources of load imbalance like follows:

• Mesh partition issues: As we said Alya relies on Metis to partition
the mesh among the different MPI processes, this partition will deter-
mine the load balance of the executions because each MPI process will
compute the data in its subdomain. In order to partition the mesh one
or more directives can be given to Metis. In general Metis will try to
keep the boundaries to its minimum and to load balance the number
of elements per partition.

? Complex mesh structure: Some very irregular meshes or with
complex structures are hard to partition for Metis.

? Heuristic used to Load Balance the partition: Alya com-
putes a heuristic that tries to guess the load of each element and
Metis will partition the mesh based on this heuristic. The heuristic
given to Metis to load balance the partition is an approximation
based on the number of integration points of each element.

In Figure 9.1 we can see two charts that correspond to two of the
simulations that we will analyze in this chapter. In the X axis
we can see the number of partitions and in the Y axis the load
balance computed as: LB = Average(timeMPIs)

Max(timeMPIs)
.

The label Theoretical LB is the load balance based on the number
of elements assigned to each partition. The Weighted LB is the
load balance obtained when using the heuristic (i.e. giving to each
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(a) Load balance for the Respiratory
System

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

16 32 64 128 256 512 1024

L
o

ad
 Im

b
al

an
ce

 (
A

vg
/M

ax
)

# MPI partitions

Theoretical LB
Weighted LB
Measured LB
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Figure 9.1: Load Balance for different inputs of Alya

element a weight based on its integration points). And the Mea-
sured LB show the real load balance observed in the execution.
We can observe that the load balance obtained by the two in-
puts is very different. In the Respiratory System (fluid mechanics
problem) the load balance that Metis achieves when partitioning
(Weighted LB) is above 0.9 in almost all the cases, but the real
load balance decreases from 0.9 to 0.3 (partitioning in 16 or 1024
partitions). On the other hand, the Iter simulation (solid mechan-
ics problem) has an almost constant load balance around 0.88 for
all the number of partitions.

? Different phases of the code: Some computations are per-
formed over the elements, but in other phases, the computation is
done over the nodes. Having a balanced execution for one of the
phases does not guaranty a load balance in another phase.

• Load change during time: Some simulations have a variable load
during the execution time. For example, in the simulation of particles,
the particles start in one MPI subdomain and during the simulation
cross boundaries and belong to another subdomain. Another example
would be a solid that break; the load will change during the execution
as the crack is propagated.
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In these situations, a balanced partition at the beginning of the simu-
lation will get imbalanced during the execution. Only a repartition of
the mesh could solve this problem, and this kind of solutions are very
expensive in execution time.

• Coupling of codes issues: When running coupled codes, an impor-
tant decision is how many resources are given to each code. It is not
easy to know beforehand the optimal distribution of resources, and a
wrong decision will produce an imbalance between the two codes.
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9.2 Improving the Load Balancing

In this section, we are going to present the performance results obtained in
Alya with two different test cases. The two test cases used are different in
the type of problem they solve, but also in the performance and load balance
that they achieve. On the one hand, the Respiratory System that solve an
incompressible flow and presents a high load imbalance. On the other hand,
the Iter simulation solve a solid mechanics problem and the partition achieves
a good load balance.

We will explain in detail the input cases and the modifications that were
made to the code to apply DLB. We will focus on the parallelization of the
second level and evaluate the impact of the parallelization performance in
the performance of LeWI.

Finally, we will also present some scalability tests executed in up to 16.000
cores.

9.2.1 Input simulations

Respiratory System

Figure 9.2: Respiratory system

For this evaluation, we are going to use
the respiratory system [71]. This sim-
ulation is used to study the airflow in
the human airways during a rapid in-
halation. It includes from the face to
the seventh branch generation of the
bronchopulmonary tree and a hemi-
sphere of the subject’s face exterior. In
Figure 9.2 we can see depicted the de-
scribed mesh for this simulation.

The mesh used for this simulation
was obtained from a contrast-enhanced
computed tomography scan clinically
acquired. The unstructured mesh con-
tains 17M elements of four different
types: tetrahedra, hexahedra, prisms,
and pyramids.
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The whole simulation of the respiratory system lasted 50.000 time steps.
In Figure 9.3 we can see the trace of one time step running in 256 cores (256
MPI ranks).
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Figure 9.3: Trace of one time step of the Respiratory System

Each time step can be divided into 3 phases very differentiated and with
a particular behavior. First, the matrix assembly can be seen in gray in the
trace, it is a loop over the elements and does not present MPI communication.
For this input, the matrix assembly shows a high load imbalance.

Afterward, we can see the algebraic solver, in green and pink, in this
case, they solve twice the momentum equation, with the GMRES method
(pink), and once the continuity equation with the Deflated Conjugate Gra-
dient method (green). The operations in the iterative solvers are loops over
the nodes and contain a high amount of MPI communications, both global
and point to point.
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Finally, the subgrid scale is computed (red), this phase loops over the
elements and does not need MPI communication. The subgrid scale compu-
tation has a high load imbalance also.

Iter: Fusion Reactor

ITER [72] (International Thermonuclear Experimental Reactor) is an exper-
imental reactor which will reproduce the physical reaction - fusion - that
occurs in the sun and stars. It is a joint research project including 35 differ-
ent countries that will last for 35 years. In Europe, it is administrated under
the Fusion For Energy project.

Displacement Magnitude
mm

0      0.4      0.8      1.2      1.4

Figure 9.4: Iter

The final aim of it ITER project is to build the
largest tokamak nuclear fusion reactor. The vacuum
vessel is the central part of the ITER machine. It
houses the fusion reactions and acts as a first safety
containment barrier. The vacuum vessel is a torus
shaped chamber.

The mesh we will be simulating represents a slice
of this torus. An image of it can be seen in Fig-
ure 9.4. This mesh contains 32 Millions of elements.

The input we will use simulates the deforma-
tion of the slice of the vacuum vessel when different
forces are applied to it.

Each step of the simulation will have two phases,
first the assembly of the matrix and second the
solver. In Figure 9.5 we can see the trace of one
time step running in 257 MPI processes.

The matrix assembly is performed over the ele-
ments, and it does not need communication at the MPI level. On the other
hand, the solver has a high amount of MPI communication and its compu-
tation is performed over the nodes.

In this trace, we can observe that the imbalance at the matrix assembly
is very different than the one in the respiratory system. In general, we can
see a better load balance among the different MPI processes.
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Figure 9.5: Trace of one time step of the Iter simulation

9.2.2 Applying DLB to the Respiratory System and Iter

We have seen that the application has different phases with very different
behavior, we have identified that the load balancing problem is in the matrix
assembly and the subgrid scale. The performance of the solver also needs to
be targeted, but load imbalance is not its biggest problem.

For this reason, we will focus on the matrix assembly and the subgrid
scale phases and disable DLB when computing the algebraic solver. Both
the matrix assembly and the subgrid scale consist of a loop over the elements
of the MPI subdomain.

The original version of this part of the code was already parallelized
using OpenMP. The subgrid scale does not present any problem, and all the
elements of a subdomain can be processed in parallel. On the other hand, the
matrix assembly needs to update the matrix of global nodes; this means that
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two elements that share a node will update the same position of the matrix.
For this reason we need an OMP ATOMIC in Algorithm 3 in lines 7 and 9.

Algorithm 3 Matrix Assembly without Coloring

1: DLB enable()

2: !$OMP PARALLEL DO SCHEDULE (DYNAMIC,Chunk_Size) &

3: !$OMP PRIVATE (...) &

4: !$OMP SHARED (...)

5: for Elements e in my subdomain do
6: Compute element matrix and RHS: Ae, be

7: !$OMP ATOMIC

8: Assemble matrix Ae into A
9: !$OMP ATOMIC

10: Assemble RHS be into b
11: end for
12: DLB disable()

The performance of this parallelization was far from optimal as we will
see in the performance evaluation, being two times slower than the pure MPI
version. The common solution to avoid the use of OMP ATOMIC is to apply
coloring to the loop. A coloring algorithm will assign a color to each element,
and two elements that share a node will have different colors. Meaning that
elements of the same color can be safely computed in parallel because they
do not update the same node.

The Coloring version has a better performance than the No Coloring, but
it does not reach the performance of the pure MPI version. The reason is that
this implementation does not exploit the data locality of the elements. To
improve this, we implemented a new parallelization using two novelty features
of the OmpSs programming model: the multidependencies and commutative
clause.

Multidependences are dependencies between tasks that are computed at
runtime and allows a different number of dependencies for different instances
of the same type of task. To use Multidependencies, we will partition the
subdomain assigned to an MPI process into tasks and obtain a connectivity
graph of these tasks. With the connectivity graph, we will be able to identify
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Algorithm 4 Matrix Assembly with Coloring

1: DLB enable()

2: Partition my subdomain in colors
3: for Color c in my colors do
4: !$OMP PARALLEL DO SCHEDULE (DYNAMIC,Chunk_Size) &

5: !$OMP PRIVATE (...) &

6: !$OMP SHARED (...)

7: for Elements e in c do
8: Compute element matrix and RHS: Ae, be

9: Assemble matrix Ae into A
10: Assemble RHS be into b
11: end for
12: end for
13: DLB disable()

Algorithm 5 Matrix Assembly with commutative Multidependences

1: DLB enable()

2: Partition my subdomain in tasks of size ChunkSize
3: Store connectivity graph in neigh
4: for Tasks t in my tasks do
5: num neigh = SIZE(t%neigh)
6: !$OMP TASK

7: !$OMP COMMUTATIVE([tasks(t%neigh(J)), J=1, num_neigh])

8: !$OMP PRIORITY(num_neigh)

9: !$OMP PRIVATE (t, ...)

10: !$OMP SHARED (...)

11: for Elements e in t do
12: Compute element matrix and RHS: Ae, be

13: Assemble matrix Ae into A
14: Assemble RHS be into b
15: end for
16: end for
17: DLB disable()
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the tasks that can not be executed at the same time because they share
nodes.

The Commutative clause indicates that two tasks can not be executed in
parallel, but the execution order between them is not relevant. In Algorithm 5
we can see the pseudocode of the matrix assembly when using commutative
Multidependences.

This version of the parallelization has good data locality because the
elements inside a task are consecutive and avoid the use of the ATOMIC clause.

In Figure 9.6 we can see a summary of the three versions of parallelization
that we implemented and will evaluate.

Elements Parallelization

OMP PARALLEL DO
+

OMP ATOMIC

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

OMP TASK COMMUTATIVE([...])

No Coloring

Coloring

Multidependences

Figure 9.6: Parallelization alternatives of matrix assembly
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9.2.3 Environment and Methodology

All the experiments have been executed in Marenostrum3, the nodes of
Marenostrum3 have 16 cores with 32Gb of shared memory.

We have used the Intel MPI library version 4.1.3 and as the underlying
Fortran compiler Intel 13.0.1. For OpenMP we have used Nanos 0.12a with
the source to source compiler Mercurium, this will allow us to use the ver-
sion of LeWI with autonomous threads and binding of threads to cores (see
Section 6.2 and Chapter 8).

The MPI processes are distributed in a Round Robin scheme among the
nodes.

For the Respiratory System we will show the performance obtained in the
Assembly and Subgrid Scale. The values shown in the evaluation correspond
to the average of 10 time steps. In the case of the Iter test case we will show
the performance of the Assembly and the results are the average of 5 time
steps that include 17 executions of the matrix assembly.

For each experiment we will use the following configurations:

• 16, 32 and 64 Nodes: We have executed the experiments in 16, 32
and 64 nodes of Marenostrum3 that correspond to 256, 512 and 1024
cores.

• Inner parallelization: We will see the results of using Coloring, No
Coloring (use of Atomics) and Commutative Multidependences as the
shared memory parallelization.

• DLB: We will run without DLB and with DLB using LeWI with bind-
ing of threads to cores and autonomous threads. The solid lines cor-
respond to executions without load balancing and the dashed lines to
the executions with LeWI.

• Node configuration: For each experiment we will see 5 different
configurations of MPI processes and threads inside the node:

? 1x16: 1 MPI process with 16 threads, this is the pure hybrid
approach, where MPI is used across nodes and OpenMP/OmpSs
inside the shared memory node. In this configuration, DLB cannot
load balance, but we show it for completeness.
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? 2x8: 2 MPI processes with 8 threads each. This is another typical
configuration when running in nodes with two sockets, each MPI
process is mapped to one socket, and 8 threads are spawn in each
socket.

? 4x4: 4 MPI processes with 4 threads each.

? 8x2: 8 MPI processes with 2 threads each.

? 16x1: 16 MPI processes with 1 thread each. In this case, the
shared memory level is only used for load balancing. This config-
uration is useful when the application is not fully parallelized with
OpenMP/OmpSs.

• Pure MPI: As a reference we show the performance of the pure MPI
version of the application.

We have divided the evaluation into four parts:

• Chunk size: We will study the impact of the chunk size in the per-
formance of the different parallelizations and in particular when using
DLB and LeWI. From this evaluation, we will decide the chunk size to
use for the following experiments.

• Execution Time: We will evaluate the performance of DLB and LeWI
in the different simulations. We will compare the 3 possibilities in the
shared memory parallelization: No Coloring, Coloring, and Multide-
pendences. And we will see how the performance of the parallelization
impacts in the performance of DLB and LeWI.

• IPC: We will see the IPC obtained in the matrix assembly and subgrid
scale of each input for the different parallelizations. This will support
the assumptions made about the performance in the previous section.

• Scalability: We will show some scalability test when running the Res-
piratory System in up to 16K cores in Marenostrum3.

9.2.4 Performance Evaluation

Chunk Size Study

In this section, we are going to see the impact of the chunk size on the
performance of the parallelization and LeWI. All the experiments have been
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executed with 16 MPI processes per node and 1 thread per process. With
this configuration, we aim to evaluate the impact of the task duration, the
amount of tasks in the queue and the impact in the malleability when using
LeWI. Using only one thread will avoid seeing the overhead of several threads
accessing to shared structures or invalidating the memory.

In Figure 9.7 we can see the execution time of the matrix assembly in
the Respiratory simulation. In the X axis are represented the different chunk
sizes used. Each Figure (9.7(a), 9.7(b) and 9.7(c)) correspond to executions
on 16, 32 and 64 nodes of Marenostrum3.

In the case of the execution without LeWI, No Coloring and Coloring are
not affected by the chunk size, until reaching very small values, around 10 or
20. Using bigger values does not represent a problem. When using Multide-
pendencies the degradation in performance happens with larger chunk sizes
around 100.

The impact of the chunk size when using LeWI comes from the fact that
bigger tasks imply less malleability because threads can not leave a task
until it is finished. The Coloring version with LeWI is the more affected by
big chunks, after chunks of size 200 the performance slowly degrades until
it reaches the same performance as the Coloring version with LeWI. This is
because the parallelism in the Coloring version, open and closes for each color
and bigger chunks mean fewer chunks to be distributed among the threads,
therefore, less parallelism. If there is not enough parallelism when LeWI tries
to spawn more threads to load balance, there is not enough work for all of
them.

We can see that LeWI improves the performance of the original execution
with the same configuration in all the cases. When choosing bigger chunks,
LeWI is not able to improve the performance, but it does not introduce
overhead. In these cases, it reaches the same execution time as the original
application.

In Figure 9.8 we can see the execution time of the subgrid scale in the
Respiratory simulation when varying the chunk size. The conclusions for this
experiments are very similar to the previous ones. The limit in the chunk size
is around 20, from this size the performance of the Coloring and No Coloring
versions degrade. For very small chunks sizes the overhead of creating the
tasks and scheduling them is too high. In this case, the limit chunk size
is bigger because the durations of the tasks are smaller if we compare the
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Figure 9.7: Performance of Matrix Assembly in the respiratory simulation
depending on the chunk size
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Figure 9.8: Performance of Subgrid Scale in the respiratory simulation de-
pending on the chunk size
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total execution time and considering that the number of elements that are
processed in the parallel loop is the same.

The higher limit for the chunk size, like before, affect when running with
LeWI only. For the Coloring version is around 1000. Although, for all the
cases the optimum is around 200. This will be the chunk size used in the
experiments executed in the following sections for this simulation.

We can see the execution time of the matrix assembly in the Iter simula-
tion in Figure 9.9. In this charts, we have adjusted the scale of the Y axis to
see some differences between the different series. Each chart corresponds to a
number of nodes (16,32 and 64), on the X axis, we can see the different chunk
sizes. In this case, the Coloring and No Coloring versions are not affected by
the chunk size. This is because the duration of these tasks in this simulation
is much higher. On the other hand, the Multidependences version is still
limited by small chunk sizes, because its limitation does not only come from
the duration of the task but also from the amount of tasks in the queue and
with a commutative relationship.

When using DLB and LeWI the use of big chunk sizes implies a loss of
performance. The three versions are affected proportionally in a similar way.

For this simulation the optimal chunk size in all the series is 100. This the
chunk size that we will use for this simulation in the following experiments.

Execution Time

In this section we will compare the execution time of the matrix assembly and
subgrid scale computations for the respiratory system and the Iter simulation
with and without LeWI for each parallelization.

In Figure 9.10 we can see the execution time of the assembly when running
the Respiratory simulation. Figures 9.10(a),9.10(b) and 9.10(c) correspond
to executions in 16, 32 and 64 nodes respectively. In the X axis we can see
the different configuration of MPI processes and threads used in each case.
In the Y axis is represented the average execution time of the assembly for
ten time steps.

When comparing the three different implementations of the paralleliza-
tion without LeWI, we can see the difference in performance that they obtain.
Being the No Coloring version the worst one versus the commutative Multi-
dependences that achieves a better performance than the pure MPI version
for some configurations.
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Figure 9.9: Performance of Matrix Assembly in the Iter simulation depending
on the chunk size
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Figure 9.10: Performance of Matrix Assembly in the respiratory simulation

147



Chapter 9. Alya: A Case Study

All the versions present a worse imbalance when increasing the number
of MPI processes per node (and decreasing the number of threads) this is
because the load imbalance increases with the number of MPI processes (see
Figure 9.1(a)). Except in the case of just one MPI process per node and 16
threads, where the threads may access memory belonging to the other socket
of the node and these data accesses are slower. When using 8, 4 or 2 MPI
processes per node, each MPI process is pinned to one of the sockets of the
node. Therefore, all the data accesses will be to the local memory of the
socket.

When using LeWI, we can see how the performance is improved respect
the same execution without LeWI. Although the performance of the paral-
lelization affects LeWI, in some cases, the load balance can overcome the
overheads of the parallelization and obtain a better performance than the
pure MPI version.

It is interesting to see how the performance of LeWI improves with the
number of MPI processes on the node, being the best configuration to fill the
nodes with MPI processes and only one thread for OpenMP/OmpSs. This
can be explained because having more MPI processes gives LeWI more flexi-
bility to load balance. i.e. if we use 2 MPI processes per node configuration,
the load balance can only be applied to the two MPI processes running on
the same node.

In all the cases the best situation is to use the commutative Multidepen-
dences with LeWI, which can represent a 37% faster execution than the pure
MPI version.

In Figure 9.11 we can see the execution time of the Subgrid Scale for
the same experiments. The main difference that we can observe is that the
performance of the No Coloring version is almost the same as the Multide-
pendences, because in the subgrid scale the ATOMIC clause is not necessary.

The other conclusions are the same as for the matrix assembly. When
using LeWI, the performance is improved in all the cases. The best config-
uration with LeWI is to use 16 MPI processes per node and one thread per
process. In this case, when running in 64 nodes, the version of Multidepen-
dences with LeWI is 44% faster than the pure MPI version.

In Figure 9.12 we can see the average execution time of the matrix as-
sembly phase in the Iter simulation. The different charts correspond to
executions in 16, 32 and 64 nodes. In the X axis, we can see the different
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Figure 9.11: Performance of Subgrid Scale in the respiratory simulation
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Figure 9.12: Performance of Matrix Assembly in the Iter Simulation
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configurations of MPI processes and OpenMP/OmpSs threads. As we have
seen in Figure 9.1(b) the imbalance in this input is not very high. Therefore,
the performance improvement that we can expect with LeWI will not be as
high as the ones obtained in the Respiratory Simulation. Note that in this
case; we have increased the scale of the X axis in order to discern better the
different values.

When comparing the performance of the different parallelizations, we
can see that the No Coloring version is much slower that Coloring and Mul-
tidependences because of the ATOMIC overhead. In this case, the difference
between the Coloring and Multidependences is not very significant because in
this simulation the amount of computation per element is higher than when
solving the fluid (Respiratory system). This means that the data locality has
less impact on the overall performance.

The simulations executed with LeWI are always faster than their analo-
gous ones. The better performance is obtained when using 16 MPI processes
per node and one thread per MPI process. When using LeWI with Multi-
dependences and 16 MPI processes per node, the performance is better that
the pure MPI version (around 5% improvement).

IPC Study

In this subsection, we are going to see a summary of the IPC obtained by the
different parallelizations (No Coloring, Coloring, and Multidependences) to
support some of the performance explanations we have used in the previous
experiments.

The data shown in the following charts have been obtained with Paraver
from an Extrae trace of a real execution. We have measured the IPC obtained
during the Matrix Assembly and the Subgrid Scale respectively.

In Figure 9.13 We can see the IPC in the Respiratory simulation during
the assembly phase. In the X axis, we can see the percentage of time that
presented the corresponding IPC respect the total CPU time spent in the
matrix assembly. We can see that the pure MPI version had an IPC between
2.1 and 2.3. When using the No Coloring version of the parallelization the
IPC went down to 1.1. This matches the previous performance results were
the No Coloring version was two times slower than the pure MPI.

The IPC of the Coloring version is between 1.5 and 1.7, better than the
No Coloring but still far from the IPC obtained by the pure MPI version.
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Figure 9.13: IPC at Matrix Assembly for the respiratory simulation

When using the Multidependences parallelization, the IPC is between 2 and
2.2 almost the same as the one achieved by the pure MPI version.
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Figure 9.14: IPC at Subgrid Scale for the respiratory simulation

In Figure 9.14 we can see the IPC in the subgrid scale phase. The IPC
for the pure MPI and the Multidependences versions are the same as in the
matrix assembly. The No Coloring version in this phase presents a much
higher IPC because it does not need the ATOMIC clause. Obtaining IPC
equivalent to the one achieved with Multidependences. On the other hand,
the Coloring parallelization has a worse IPC than the others because of the
loss in data locality. But we can see that the performance loss is not as
important as in the matrix assembly phase, this is because in the Subgrid
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Scale the pressure over the memory is not as high as in the matrix assembly
phase.
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Figure 9.15: IPC at Matrix Assembly for the Iter simulation

Figure 9.15 shows the IPC obtained in the matrix assembly during the
Iter simulation. As we said before the solution of this problem has a higher
computational load per element, and this can be seen in the higher IPC in
all the cases. The pure MPI version has an IPC around 3 almost during
the whole phase. The No Coloring version goes down to an IPC of 2.5 but
still far from dividing the IPC by two that we observed in the Respiratory
simulation. Again, this confirms that there is more computation going on,
and the impact of the ATOMIC clause is not as high as in the other case.

The Coloring parallelization presents an IPC of 2.7 because of the worst
data locality, and the Multidependences version obtains an IPC of 2.9 achiev-
ing almost the same performance as the pure MPI version.

Scalability

During this evaluation, we had the opportunity to run some strong scala-
bility tests in Marenostrum3 with up to 16384 cores (1024 nodes). In these
experiments, we want to demonstrate that DLB and LeWI can scale up to
using thousands of cores. But also that even working at the node level the
use of DLB can help improve the performance significantly in this kind of
executions.
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In these executions we have simulated the Respiratory System using the
best configurations observed in the previous experiments, 16 MPI processes
per node with 1 thread per process and chunks of 200 elements.
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Figure 9.16: Execution time of Respiratory Simulation up to 16k cores

In Figure 9.16 we can see the execution time of the matrix assembly
and the subgrid scale. In the X axis, we can see the number of cores used
to run and in the Y axis the elapsed time in seconds. We can see how
using LeWI with Multidependences or Coloring can reduce the execution time
significantly. The Multidependences version shows the same performance as
the pure MPI version.

In Figure 9.17 we can see the scalability as is usually presented by appli-
cation developers, using as base case the smallest number of resources used:

Scalabilityx =
elapsedT ime1024
elapsedT imex

We want to show how misleading this metric can be, in this chart the
best scalability is obtained by the Coloring version without LeWI. But this
version is the one that gets the worst execution time. On the other hand,
the executions with LeWI (both with Coloring and Multidependences) has a
worse scalability curve, but a better execution time.

In Figure 9.18 we can see the speed up respect the pure MPI version
in 1024 cores. In this case, all the versions are computed versus the same
baseline scenario.
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Figure 9.17: Scalability of Respiratory Simulation up to 16k cores

Speedupx =
elapsedT imePureMPI1024

elapsedT imex

In this chart, we can see how the performance of the LeWI versions is
significantly better even when running in a large number of cores. Being able
to obtain a speed up of 23 when using 16 times more resources.
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Figure 9.18: Speed up of Respiratory Simulation up to 16k cores
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9.3 Improving the Performance of Coupled Codes

In this section, we are going to evaluate the benefits of using our DLB library
when running coupled codes. Coupling of codes is a common practice in HPC
environments. In atmospheric modeling, for example, a code will simulate
the ice, another one the earth and another one the oceans.

When a user needs to start a coupled simulation the first question that
arises is: How many processes/resources I should give to each code? This is
relevant to obtain a well balanced execution. But it is not easy to determine
because it is a trial and error process. Moreover, the loads can change during
the execution, and different configurations may be the optimum in different
phases of the application.

In this context we will demonstrate how using DLB and LeWI can release
the users of this decision. And can help to obtain an efficient simulation
independently of the distribution of resources among the different codes.

9.3.1 Input simulation: Sniff

Figure 9.19: Sniff simulation

In this evaluation, we will use a simulation
of the respiratory system when inhaling a
medicinal spray [73]. The objective of this
simulation is to track the particles after they
are injected and inhaled in the nasal cavity
through the airways.

For this study, it is necessary to simulate
the airflow when doing a rapid and short in-
halation, called Sniff. The flow in the air-
ways is simulated using the computational
fluid dynamics. Lagrangian particle track-
ing is used to simulate the trajectory and
deposition of the particles injected with the
spray.

In this experiment the coupling is one-
way, meaning that solving the fluid equa-
tions is necessary to know the velocity ap-
plied to the particles, but the particles have
no effect on the fluid.
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This simulation can be executed in a synchronous way using a single
instance of Alya that uses all the resources available. When running the
synchronous version, first, the fluid equations are solved. Once the velocity
has computed, the transport of particles can be calculated, as can be seen in
Figure 9.20(a).

...Fluid ParticleFluidParticlen MPI processes

Step 1 Step 2

(a) Synchronous execution

Particle

Fluid

Particle

Fluidf MPI processes

p MPI processes

n = f + p Send velocity

...

...

Step 1 Step 2

(b) Asynchronous execution particle dominated

…Particle

Fluid Fluidf MPI processes

p MPI processes Particle

...

Step 1 Step 2

(c) Asynchronous execution fluid dominated

Figure 9.20: Execution scenarios for the multi-physics problem: Sniff

When running a coupled version of the simulation two instances of Alya
are used, one of them will solve the fluid and the other one the particle
transport. The two codes will be able to run concurrently and when the fluid
finishes will send the velocity to the particles. The available computational
resources will be shared among the two instances of Alya.

Using an asynchronous version implies a different partition of the mesh
for the two codes. In Figure 9.21 we can see the partition of the mesh
obtained when running in 256 cores, the nodes represent the gravity center
for each MPI partition and the lines the connectivity between the different
partitions. When using the synchronous version, there is only one partition
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Synchronous Asynchronous

Fluid
192 partitions

Particles
64 partitions

Fluid + Particles
256 partitions

Figure 9.21: Partition of the mesh for 256 cores in the synchronous (256) and
asynchronous (192+64) versions

for the two codes in 256 subdomains (left-hand side image). When using the
asynchronous version the fluid code will partition the mesh in 192 subdomains
and the particles code will have a different partition of 64 subdomains.

To evaluate all the possible situations we have considered two scenarios:

Injection of 0,5M Particles: In this scenario, the computational load of
the fluid is higher than the one for the particles, we call it a fluid
dominated execution. This means that the code solving the particle
transport will wait for the fluid to finish and send the velocity, as can
be seen in Figure 9.20(c)

Injection of 10M Particles: In this scenario, the computational load of
the fluid is lower than the one for the particles, we call it a particle
dominated execution. This means that the code solving the fluid will
wait for the particle instance of Alya, as can be seen in Figure 9.20(b)

The mesh used contains 17M elements, and the whole simulation lasted
10.000 time-steps.

The load imbalance of the fluid code in this mesh has been studied in
detail in the previous section. In the particles code, we will see that the
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Figure 9.22: Particles injected in the nasal cavity

load imbalance is quite extreme because at the beginning of the simulation
all the particles are injected into the nasal cavity. Therefore all the particles
are concentrated in few MPI processes. In Figure 9.22 we can see an image
extracted from the simulation where the color of each particle represent the
instant in time in this position. In this image, we have a zoom of the nose,
because all the particles are in this part of the system at the beginning of the
simulation, although the mesh and simulation include the whole respiratory
system.

Moreover, during the simulation the particles are moving through the
respiratory system and crossing MPI subdomains, this means that the load
balance will change during the simulation. Even if an ideal distribution of
MPI processes between fluids and particles was found it would constantly
change during the execution.

9.3.2 Applying DLB to the Sniff Simulation

The use of DLB in this simulation will solve 3 load balancing problems and
independent between them: The load imbalance in the fluid, the load im-
balance in the particles and the distribution of MPI processes between fluids
and particles.

To apply DLB to the Sniff simulation we started from the production
version of Alya with some minor modifications. In the fluid code, we have
used the parallelization explained in the previous section with coloring (At
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the moment of this evaluation the parallelization with commutative multide-
pendencies was not available yet).

Algorithm 6 Algorithm for the parallel transport of particles.

1: DLB enable()

2: Nover = 0
3: while Nover 6= Np do
4: !$OMP PARALLEL DO SCHEDULE (DYNAMIC,1000)

5: !$OMP ...

6: for Particles p in my subdomain do
7: Compute particle p
8: if particle p is in halo element then
9: Save particle to be sent to neighbor

10: else
11: Nover = Nover + 1
12: end if
13: end for
14: !$OMP END PARALLEL DO

15: MPI AllReduce(Nover)

16: MPI Send particles in halo elements to corresponding neighbors
17: MPI Recv particles from neighbors
18: end while
19: DLB disable()

In the particles code, we added the OpenMP parallelization to two loops,
the injection of particles into the system and the loop to compute the trans-
port of particles. We also added calls to the DLB API to enable DLB in
the parts of the code parallelized with OpenMP and disable it the remain-
ing time. In Algorithm 6 we can see the pseudo-code for the loop over the
particles and the calls to the DLB API added.

In Figure 9.23 we can see the first step of the simulation that includes the
injection of particles. The injection of particles is done only at the beginning
of the simulation, and compared with the full simulation that lasts 50.000
time steps we can consider it negligible. But, on the other hand, when
injecting 10M of particles it took 2 minutes on 656 cores, for this reason, we
have parallelized the injection of particles and enabled DLB.
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Figure 9.23: Trace of the first step of the Sniff with 10M of particles
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Figure 9.24: Trace of the second step of the Sniff with 10M of particles

162



9.3. Improving the Performance of Coupled Codes

In Figure 9.24 we can see a trace of the second step of the Sniff simula-
tion, this simulation is running in 328 MPI process with 2 OpenMP threads
each one. In Subfigure 9.24(a) we can observe one time step of the syn-
chronous version. In this case first is solved the fluid in the 656 cores, and
afterward the particles in the same resources with the same domain partition.
In Subfigure 9.24(b) we can see the asynchronous execution of a time step
using 256 MPI processes for the fluid and 72 MPI processes for particles. In
this version, the fluids and particles are running in parallel.

In Figure 9.25 we can see two traces, in these traces, we can observe the
detail of one of the nodes (the more loaded one, therefore, the bottleneck).
The traces include one time step of the asynchronous execution. In Subfig-
ure 9.25(a) we can observe how the computation of fluids and particles are
overlapped we can also see some amount of load imbalance at the fluid code.
In this node we find two processes computing the particles (with 2 OpenMP
threads each one), but only one of them have particles to compute, the other
one is idle all the time (black).

In Subfigure 9.25(b) we can see the trace of the same node when using
DLB. In this trace, we can identify the three situations where DLB acts
to improve the performance. In a purple circle, we can see how the load
imbalance at the fluids code is solved. Inside the orange circle, we can see
how the process of particles that does not have particles to track, lends its
cores to the process with particles in the same node (enabling an execution
with 4 OpenMP threads). And finally in the blue circle, we can see how the
process computing the particles can use the cores from the fluids processes
to run with up to 16 OpenMP threads.

9.3.3 Environment and Methodology

All the experiments of this section have been executed in Marenostrum3.
The nodes of Marenostrum3 are based in SandyBridge with 2 sockets of 8
cores each one and 32 Gb of shared memory.

The Fortran compiler used is Intel 13.0.1. For MPI we have used the Intel
MPI library version 4.1.3.049. The OpenMP runtime used is Nanos 0.12a,
this allows us to exploit the integration of DLB with the Nanos runtime and
use the autonomous threads version of the LeWI policy (See Section 6.2 and
Chapter 8).
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Figure 9.25: Trace of the bottleneck node when running 256 processes for
the fluid and 72 for particles
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For all the simulations, the MPI processes are started with one OpenMP
thread. This means that OpenMP is exclusively used for load balance with
LeWI.

The MPI processes have been distributed in a Round Robin scheme
among the computational nodes; this allows to have processes solving the
fluid and processes solving the particles mixed in all the nodes.

For this evaluation several numerical and computational configurations
have been considered:

• Synchronous vs asynchronous: We will compare the performance
of the synchronous version with the asynchronous one. When running
the synchronous code, we will fill the nodes with MPI processes (i.e.
16 MPI ranks per node). For the asynchronous executions, we have
used four different proportions of MPI processes between the two codes
(fluid and particle):

? 8 + 8: Starting 8 MPI processes for the fluid and 8 MPI processes
for particles on each node.

? 12 + 4: Starting 12 MPI processes for the fluid and 4 MPI pro-
cesses for particles on each node.

? 14 + 2: Starting 14 MPI processes for the fluid and 2 MPI pro-
cesses for particles on each node.

? 15 + 1: Starting 15 MPI processes for the fluid and 1 MPI proces
for particles on each node.

Table 9.3.3 shows a summary of the total number of MPI processes
used in each code for all the possible configurations.

• Original vs DLB: All the experiments have been executed with and
without DLB. The executions without DLB are labeled Original. The
results obtained with DLB using LeWI, binding of threads to cores and
autonomous threads are labeled as LeWI + Mask + Auto.

• 16, 32, 64 computing nodes: We will present the performance re-
sults obtained on 16, 32, 64 computing nodes of Marenostrum3 that
correspond to 256, 512 and 1024 cores respectively.
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Code Per node 16 nodes 32 nodes 64 nodes

Sync 16 256 512 1024

Asynch fluid + part fluid + part fluid + part fluid + part
8 + 8 128 + 128 256 + 256 512 + 512

12 + 4 192 + 64 384 + 128 768 + 256
14 + 2 224 + 32 448 + 64 896 + 128
15 + 1 240 + 16 480 + 32 960 + 64

Table 9.1: Distribution of MPI processes for fluid+particle, per node and in
total.

• Amount of particles: We have considered two numbers of particles,
0.5 and 10 million. This will allow us to compare the performance in a
fluid dominating and particle dominating situation.

? 0.5M particles → Fluid dominates

? 10M particles → Particle dominates

• Execution of 10 time steps: We have executed 10 time steps starting
with the particle injection in the vestibule of the nasal cavity. In the
performance results, we will present the average execution time of 10
time steps excluding the first one that includes the injection of particles.
And the total execution time of the first 10 time steps, in this case, the
injection of particles is included.

9.3.4 Performance Evaluation

In Figure 9.26, 9.27 and 9.28 we can see the average execution times for the
first 10 time steps excluding the injection of particles in 16, 32 and 64 nodes
respectively. The charts on the left-hand side correspond to the execution
that is fluid dominated (i.e. injection of 0.5M particles), the right-hand charts
present the results of the particle dominated scenario where 10M particles are
injected. In the Y axis, we can see the average time step in seconds and in
the X axis the different configurations of MPI processes among the two codes
and the synchronous or asynchronous execution. The solid bars represent
the execution of the original code and the stripped bars the same execution
when using DLB with LeWI.
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Figure 9.26: Average time step duration of Sniff in 16 nodes
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Figure 9.27: Average time step duration of Sniff in 32 nodes
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Figure 9.28: Average time step duration of Sniff in 64 nodes

We can observe that the performance of the original execution, when
the computation is dominated by the fluid (0,5M particles, left-hand side
charts), differs from the one obtained by the particle dominated execution
(10M particles, right-hand side of the figure). This is because the fluid and
the particle codes have different scalability behaviors, while the fluid code
scales quite well [74], the particle code has a poor scalability due to the high
load imbalance. Therefore, the global scalability highly depends on which
code dominates the computation.

We can see how the executions with LeWI improve the performance in
all the individual situations.

When analyzing the performance of the asynchronous version, we can see
that it depends on the distribution of MPI processes among the fluids and
the particles codes. Almost in all the cases we can find a configuration of
MPI processes that perform better that the synchronous version. But at the
same time when choosing any of the other configurations, we can see how
the performance drops, for some of the configurations the asynchronous code
with a bad distribution can be two times slower than the synchronous one.

We can observe that using DLB and LeWI can hide the performance
problem when using an inadequate distribution of MPI processes among the
codes (fluids and particles). The execution time when using LeWI is al-
most constant independently of which version we are running (synchronous
or asynchronous) and how many MPI processes for fluids and particles we
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are running. This means that LeWI can manage the load balance between
the two codes independently of the initial distribution of MPI processes.
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Figure 9.29: Execution time of 10 time steps of Sniff in 16 nodes
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Figure 9.30: Execution time of 10 time steps of Sniff in 32 nodes

In Figures 9.29, 9.30 and 9.31 we can see the execution time of 10 steps
including the injection of particles. Although, in this experiment, the injec-
tion of particles is only performed once and the whole simulation can run for
over 10.000 time steps. Nevertheless, in other simulations can happen more
than once.
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Figure 9.31: Execution time of 10 time steps of Sniff in 64 nodes

We can see that in the particle dominated executions (right-hand side
charts) the impact of the particle injection is very high, and using LeWI can
improve the performance extremely. Moreover, LeWI can maintain a regular
performance across the different distribution of MPI processes among the two
codes, or even when using the synchronous version.

In the fluid dominated simulation (left-hand side charts) LeWI also hides
the imbalance between the codes, obtaining a similar performance with the
different configurations of processes.

9.4 Conclusions for Alya

In this chapter, we have demonstrated that DLB and LeWI are ready to be
used in production codes with minimum effort.

We have evaluated the use of LeWI to load balance an HPCM (High per-
formance Computational Mechanics) code when solving two different prob-
lems: A computational fluid dynamics and a solid mechanics. One of them
with a high load imbalance and the other with a reasonable good load balance.
The use of LeWI can improve the performance when a high load imbalance is
present and speed up the execution up to a 44% faster (in the same number
of resources). At the same time, it does not penalize the execution of a well
balanced simulation.
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We have evaluated the impact of the shared memory parallelization in the
performance of DLB and LeWI. In some cases, we have seen that LeWI can
overcome the overhead of the parallelization and obtain a better performance
than the pure MPI parallelization.

In general, the best configuration to use LeWI is to use one thread per
MPI process, using the second level of parallelism only to load balance. Even
though, this implies a higher number of partitions, which usually present a
higher load imbalance.

We have also analyzed the impact of the chunk size on the performance
of LeWI. We have observed that the chunk size can limit the benefits of
using LeWI, big chunk sizes imply less malleability to change the number of
threads and too big chunk sizes can even disable the effect of using DLB. On
the other hand, extremely small chunks can penalize the OpenMP/OmpSs
parallelization. Nevertheless, the range of size chunks in which all the versions
obtain an optimum performance is very broad.

In this chapter, we have tested the performance of LeWI when scaling up
to thousands of cores. We have demonstrated not only, that LeWI can scale
up to 16k cores. But also, that even working only within the node it can
improve the performance of this kind of executions.

Finally, we have evaluated the use of LeWI when running coupled codes.
In this kind of executions, the decision of how many resources to dedicate to
each code can have a significant impact in the performance. We have seen
that the use of LeWI can alleviate this decision. When using LeWI we can
achieve a similar performance in all the configurations, even when selecting
the worst ones.

We have seen that when simulating 10M of particles DLB with LeWI can
make the execution between a 45 and 72% faster ( speed up between 1.8
and 3.5 with the same number of resources). When running with 0.5M of
particles, LeWI can run between 20 and 32% faster ( speed up between 1.2
and 1.5 of the original code).
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Chapter10
Conclusions and Future Work

10.1 Conclusions

In this thesis we approach the load imbalance problem. Our main objective is
to minimize its impact in the performance of applications and in the efficient
use of computational resources.

We have seen that load imbalance is a dynamic problem. It can have
very different sources and can change with the system, the software or the
execution environment. For this reason, it can not be solved a priori and a
dynamic solution applied at runtime is necessary.

The solution we propose is used at runtime, through a library that can be
loaded dynamically and without modifying the source code of the application.
It can react to load imbalance coming from any source, independently of the
system, the code or the input of the execution. This have been developed
within DLB: Dynamic Load Balancing library.

The DLB library includes a novel load balancing algorithm: LeWI (Lend
When Idle). The main idea of LeWI is to use computational resources as-
signed to processes or threads that are idle, to other processes that are doing
useful computation. For example, in the case of an MPI+OpenMP applica-
tion, when a processes reaches an MPI blocking call it will lend its compu-
tational resources to another process running in the same node to speed up
its execution.
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We have evaluated the performance of DLB and LeWI in different scenar-
ios. From these evaluations we have seen that DLB and LeWI can solve load
imbalances from different sources. We have als learned the following general
conclusions.

The software stack in HPC systems have several layers that tradition-
ally do not work together or cooperate, we have observed the importance of
the cooperation between these layers to obtain an efficient use of the com-
putational resources. Our library interacts with several layers of the HPC
software stack and tries to coordinate them.

We have seen that Malleability (the capacity to change or adapt during
the execution) is crucial to improving the efficiency of HPC systems at run-
time. Malleability is necessary for programming models not only to allow a
change in the amount of resources used but also to do it with enough fre-
quency. Malleability must be present also in applications; it is important to
avoid programming practices that are dependent on the number of resources
(processes or threads), i.e. allocate memory structures depending on the
number of threads running.

The original objective of DLB was to be an entirely transparent solution
to the application, where it was not necessary a previous analysis of perfor-
mance nor to modify the source code. We achieved this objective in the first
version and evaluation of the library using the interposition technique of MPI
and the standard API from OpenMP the change the number of threads.

We also observed that the application developers have a knowledge of
their application that can be useful to give some hints to the DLB library.
With this information, DLB will be able to make a more efficient use of the
resources. Therefore, we trade-off some transparency for better performance.

In the evaluations that we have performed in general the best configura-
tion of MPI processes per threads when using DLB and LeWI is to fill the
nodes with MPI processes and use only one thread per MPI process. With
this configuration, the second level of parallelism is used only to load balance
the MPI level. For application developers, this can be very interesting, be-
cause having a full parallelization with OpenMP (or OmpSs) is not always
trivial or possible. Using this approach not only allows a progressive paral-
lelization but also to parallelize only the parts of the code where the load
imbalance can be improved.
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10.2 Contributions

We have presented DLB as a framework to improve the use of resources at the
node level. We have demonstrated that the DLB framework is stable using
it in production runs with Alya, an HPC computational mechanics code. We
have also proved that it scales up to thousands of cores in Marenostrum3.

The DLB framework coordinates and interacts with several layers of the
HPC software stack. The current version supports OpenMP, OmpSs and
MPI programming models and is ready to be extended to other programming
models or runtime libraries.

DLB can be used transparently to the application, without modifying it,
but it also offers and API that can be used to give hints from the application.

Within the DLB framework we have implemented two load balancing
algorithms, the first one based on related works and our novel algorithm:
LeWI, Lend when Idle.

LeWI reacts to the load imbalance at runtime and does not need previous
information, either from other executions or previous iterations. For this
reason, it can respond to load imbalances coming from any source.

We have seen that LeWI can improve the performance of applications
independently of the decisions taken by the user when choosing the distri-
bution of MPI processes or configuration of MPI processes and threads per
node.

One of the strengths of LeWI is that it can load balance very fine granu-
larities. But, to handle fine grain imbalances it needs a fine grain malleability
both from the programming model and the application.

We have integrated DLB and LeWI with a parallel runtime library:
Nanos++. This integration has allowed us to define, develop and test an
API that now is ready to be used by other runtime libraries. We have also
seen the potential of collaborating with the different layers involved in the
performance of HPC applications.

Finally, we have evaluated the use of DLB and LeWI with a production
code, Alya, when solving relevant scientific problems in an HPC environment.
With Alya, we have seen that LeWI can be improve significantly the perfor-
mance of real applications and has no problem scaling up to 16.000 cores (In
Marenostrum3).
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The evaluation with Alya has presented a new scenario where DLB can
help HPC developers and users, the coupled executions. Coupled executions
are common in HPC environments where different applications collaborate
to address a problem, in this case, the developers must decide the amount
of resources given to each application. Developers can make a blind decision
or try different configurations to find an optimum one. The use of DLB and
LeWI can alleviate this decision, as the resources can be shared when nec-
essary. Moreover, we have seen that the performance of coupled executions
can be maintained constant independently of the distribution decided by the
user when using DLB and LeWI.

10.3 Open research topics

We have several research topics related to the DLB framework that we plan
to develop in the future and some of them that are already in development.

New modules: DROM and Stats The DLB framework will be divided
into three independent modules but compatible between them (Figure 10.1).
The micro-Load Balancing module (µLB) is the main core of this thesis and
is in charge of solving load imbalances at very fine granularities.

Figure 10.1: DLB frame-
work and its modules

The DROM (Dynamic Resource Ownership
Management) module, offers the functionality of
changing the assignment of resources by chang-
ing the ownership of cores. This module has
been already implemented and currently we are
testing and evaluating it. The Stats module
collects different metrics about the performance
and provides and API to check them.

These modules are designed to be used by
other entities that will be in charge of taking

the corresponding decisions. For example, the job scheduler can ask to the
Stats module if a node is underutilized and decide to reduce the number of
resources assigned to one of the processes to start a new application in the
same node. It can reduce the resources of a running process using the DROM
module.

The first draft of the proposed API for DROM is the following:
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• void DLB Drom Init(void):

Allows a process to enter the system to be able to use the DROM API.
Note that this function is for the resource manager, the processes man-
aged by the system will register into the system through the DLB Init
call explained in Section 5.5.2.

• void DLB Drom Finalize(void):

Finalize the use of the DROM module by the resource manager.

• int DLB Drom GetProcessMask(int pid, dlb cpu set t mask):

Obtain the current mask of owned resources for a given process.

• int DLB Drom SetProcessMask(int pid, const dlb cpu set t

mask):

Change the mask of owned resources of a given process. This call is
synchronous, meaning that it will not return until the target process
effectively applies the new mask.

Integration with Resource Manager: Slurm Through the API offered
by the new modules DROM and Stats, we plan to integrate DLB with a
resource manager. In this case, we will be working with Slurm [75] [76]
because it is open source and can be easily extended through plugins.

This integration will allow Slurm to obtain information about the per-
formance of each node through the Stats API. With this information, Slurm
can take decisions during the execution based on the load of the node or the
performance of a particular process.

The DROM API offers an interface to Slurm to change the resources used
by any running process. This functionality allows several scenarios:

• A user wants to send a second application in the resources previously
allocated to another application. For example, when running a simula-
tion that can use hundreds of cores during several hours or even days,
the user may want to analyze some of the results to see the progress of
the simulation. Instead of requesting for more resources he can launch
the analysis application in the same resources as the simulation was
running. The resources used by the simulation will be reduced while
the analysis is running. When the analysis finishes, the simulation can
resume using all the resources.
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• Slurm detects that a node is being underutilized, and decides to reduce
the number of resources assigned to the processes running on that node.
In these freed resources Slurm can spawn a new process or application
if needed.

This integration is already in development and testing and the next step
will be to evaluate its potential.

Port to many-core system: KNL We have seen that DLB can scale
up to a thousand of nodes of 16 cores per node. The next step is to port
DLB to a many-core system, like for example KNL from the Intel Xeon Phi
family. This will allow DLB to have more flexibility to load balance because
of the higher number of cores. It will allow testing more configurations of
MPI processes per node and threads per process.

At the same time, we will stress DLB with a high number of threads
accessing the system. We will evaluate if DLB can support this pressure or
if there is a performance problem. With more cores available it might be
interesting to evaluate more elaborated policies to decide to which process to
lend the core.

Extend Load Balancing Policies We want to implement other load bal-
ancing policies. The main idea of lending the cores when not using them
would be the same, but the decision of which process get the lent core can
be based on different policies.

We can take into account if the user is the same, or prioritize lending
cores to processes belonging to the same application. To implement this
kind of policies, we must keep information inside DLB about the user and
the application to which each process belong. And maybe we can apply some
accounting to ensure that the resources are shared in a fair way among the
different applications or users.

DLB Node Barrier In order to use the resources of a process while waiting
for an MPI call, we need to set the MPI runtime wait mode as non-polling.
We have observed that setting this mode can delay the end of MPI calls. In
some applications or phases with a high number of communications, these
can degrade the performance significantly.
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We have implemented a barrier in the shared memory of the node;
this barrier does not consume CPU because the threads are sleeping in a
semaphore. We can use this barrier directly using the API DLB Barrier().

We have a preliminary implementation of the DLB Barrier that can only
be used through the DLB API. We plan to evaluate its performance compared
with the different blocking modes offered by MPI libraries. If the evaluation
shows that DLB Barrier has potential we will add its use transparently to
the user. We will do this using the PMPI interposition, we can use the
DLB Barrier before each call to a collective MPI call. This implementation
would allow dividing the collective MPI calls into two phases a first non-CPU
consuming done inside the shared memory node, and a second step is done
in a polling mode with the processes outside the node.

10.4 Outreach

The development of this thesis have produced several publications ([6] [7] [8]
[9] [10] [11]).

The current stable version of DLB is 1.2. The code of DLB is open source
with a LGPLv3 license. The DLB Framework is available as a software
package to be used that can be downloaded from: https://pm.bsc.es/dlb-

downloads.
The user guide of DLB can be found here: https://pm.bsc.es/dlb-docs/

user-guide/

We have a public web page to disseminate DLB: https://pm.bsc.es/dlb.
In it we can find general information about DLB and related links.
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AppendixA
DWB Algorithm Limits

During the evaluation of this algorithm we detected an important limitation
related to the granularity of the resources. I.e. in the experiments that we
will show in the following sections we run in nodes with 4 cpus this means
that the granularity that we can use to load balance is a 25%. Each time
we move a cpu from one process to another we are moving the 25% of the
resources.

In this section we are going to try to answer two questions:

• How many cpus per node do we need to balance an application?

• With X cpus, which is the % of Efficiency that we can expect of an
application?

This study will tell us which is the maximum performance we can expect
depending on the number of cpus that the node has available.

In this section, all the numbers are synthetic (i.e obtained with numerical
computations not real executions). All the numbers in this section are ob-
tained supposing that there are two MPI processes per node and the 100% of
the code of the application is parallelized. In other words, the % of Efficiency
shown in this section is the maximum that can be obtained with that number
of processors.

To obtain the % of Efficiency and time we have first calculated the dis-
tribution of cpus in the same way as the redistribution of cpus model
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does, the number of cpus per process is directly proportional to the load of
each process, and each process should get at least one cpu. The equation A.1
is the formula we have used to calculate the number of cpus that should be
assigned to the least loaded process (i.e. its load is between 1% and 50%).

Assigned procs = Max

(
1, Round

(
%load ∗ total cpus

100

))
(A.1)

Figure A.1: Flow of data to calculate synthetically Efficiency, Time and
Speed up

In Figure A.1 is shown a data flow that depicts the procedure to calculate
the % of Efficiency, time and speed up synthetically. The red rhombus rep-
resent the input data and its possible values, the green circles represent the
output data obtained, and the yellow squares the computation procedures
needed.

One last clarification before examining the results obtained is that the
imbalance of the application is represented as the percentage of load of the
first MPI process. So in the charts will usually appear the imbalance from
1 to 50, an imbalance of 1 means that the first MPI process have the 1% of
the load and the second one the 99% remaining, so represents a very imbal-
anced application (probably not a realistic situation). On the other hand an
imbalance of 50 means that the first MPI process does the 50% of the compu-
tation and the second one the other 50% and represents a perfectly balanced
application. The imbalance from 51 to 100 will not be shown because the
information is redundant.

We have separated the section in subsections depending on the metric we
are measuring at each time: % of Efficiency, time or speed up.
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% of Efficiency

In this subsection we will measure the performance that is obtained by an
application with a metric that we will call % of Efficiency. This metric
represents the efficiency in the use of the resources as the percentage of time
that the cpus are doing computation (not idle, blocked in a MPI call) respect
the total execution time.

The formula used to compute the % of Efficiency is shown in Equation
A.2.

%Efficiency =

∑x=1
num cpus(cpu timex)

Maxx=1
num cpus(cpu timex) ∗ num cpus

∗ 100 (A.2)

Figure A.2: Example of how to compute the % Efficiency

In Figure A.2 is shown an example on how is computed the % of Efficiency.
In this example we suppose we have 8 cpus in the node (4 threads per MPI
process) and presents an imbalance of 33%-67%. The first process is doing
computation during 5 seconds, then waits to synchronize with the second
one. The second process finishes the computation in 10 seconds. Therefor
of a total of 80 (10 * 8) seconds of cpu time that they are using they are
computing 60 (20 + 40) seconds. This is equivalent to be using the 75% of
the time assigned.

When we try to balance an application what we target is to achieve a
100% of Efficiency, or what is the same that there are not processors idle
waiting for the others.
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As example or guideline in Figure A.3 is shown the % of Efficiency that
can be obtained when running an application with equipartition and with
different percentages of imbalance.

Figure A.3: Efficiency obtained without DLB

The average of % of Efficiency that can be obtained with different number
of processors per node can be seen in Figure A.4. The number of cpus of
the node appear in the X axis. Each blue bar represent the average % of
Efficiency that can be obtained between the different values of imbalance.
An average of 88,5% of Efficiency can be obtained with 8 cpus per node.

The green bars are the average excluding the values from 1 to 10 % of
imbalance because we consider this cases as very extrem and wanted to see
the difference it makes in the evaluation. With 8 processors per node we
can achieve a 92,94% of Efficiency in average if we consider only applications
with an imbalance lower than 90%-10%.
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In Figure A.4 is represented also the standard deviation from the aver-
age. Is interesting to see that the more number of processors per node the
less variance in the Efficiency obtained between the different percentage of
imbalance. The standard deviation for the numbers excluding the imbalance
from 1 to 10% is significantly smaller than the one containing all the values.

Figure A.4: Average of % of Efficiency

In Figure A.5 we can see the % of Efficiency that can be obtained for
each number of processors per node and depending on the imbalance that
the application presents. It is a detailed view of the previous one were we
can see the effect that the imbalance have on the Efficiency. Each line rep-
resents the behavior of a number of processors per node. From this chart
we can observe that for some percentages of imbalance is hard to get good
Efficiency, specially the very imbalanced applications (from 1%-99% to 7%-
93%). For instance , with an imbalance of 8%-92% we need 32 cpus to obtain
a % of Efficiency of 92%. We can also observe from this chart that the Effi-
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ciency respect the imbalance does not get stabilized but fluctuates with the
imbalance.

Figure A.5: % of Efficiency that can be obtained with different number of
cpuS using the redistribution of cpus model

In general we can see that with 8 cpus per node the % of Efficiency is
over 85% most of the time, except in extremely imbalanced situations (from
1%-99% to 10%-90%). If we go one step further with 16 cpus per node the
% of Efficiency is over 90% and around 95% for almost all the imbalances.

The main observation we obtain from this study is how the Efficiency
obtained depends both on the number of cpus per node available and the
imbalance between the MPI processes. If the imbalance that the application
presents is favorable to be divided in the given number of cores the Efficiency
will be high, even if the number of cores available is small.
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Being conservative we can say that with 8 processors per node the % of
Efficiency that can be obtained is acceptable. But if we are really worried by
balancing issues 16 cpus per node would be a more secure choice.

Execution time

The metric that we have shown until now is the Efficiency that is a measure
that tries to maximize the usage of the resources. In the following pages we
are going to show an evaluation based on execution time that is a measure
more user oriented.

In the evaluation that follows we have emulated the time that will take an
application to finish depending on the number of processors available. The
suppositions we have made is that the application runs in one node with two
MPI processes, that when running in serial the application takes 100 seconds
to finish and that with an application well balanced (% Unbalance is 50%)
the speed up is ideal (i.e with 2 processors the speed up will be 2).

Figure A.6: Execution time for 2 to 8 cpus per node with redistribution
model
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In Figure A.6 we can see the time in seconds that we estimate an ap-
plication will take to run depending on the number of processors available,
the imbalance that presents and the distribution of cpus calculated by the
algorithm of redistribution.

The graph shows that if we are running an application with 4 processors
and the imbalance it presents is between 33% and 37% we can release or
decrease the frequency of one cpu without impact in the execution time. In
all the cases where there are two lines overlapped it means that the execution
time is the same, therefor we can use the lowest number of processors to
achieve the same performance of the application.

Figure A.7: Execution time for 8 to 16 cpus per node with redistribution
model

We have divided into two charts the execution time just because a matter
of visibility. In Figure A.7 we can find the execution time when running
an application from 8 to 16 processors. In this chart seems that there is
more overlap of lines. This means that the more number of processors we
are using the more number of processors we will be able to release without
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penalizing the application. For example when running with 16 processors if
the application have an imbalance of 9% we could release 4 processors (run
with 12) and finish in the same amount of time. But on the other hand what
we also notice is that the margin of imbalance in which we are moving gets
smaller.

To show the numbers we are talking in Table A.1 is shown the execution
time for the different imbalances (vertical) and number of procs per node
(horitzontal). The numbers that are colored with the same color in the same
line are equal. Meaning that an aplicacion with that imbalance will present
the same execution time with different nuimber of cpus. For example, if we
are executing an application that presents an imbalance of 12%-88% with 12
cpus per node it can finish in 12 seconds, but with 9 cpus per node the time
obtained is also 12 seconds. This numbers suggest that maybe with the cpus
we have we can not improve the performance of the application

Speed up

The speed up presented in this subsection have been calculated with the
execution time calculated in the previous subsection and a serial time of the
application supposed of 100 seconds.

In Figures A.8 and A.9 we can see the speed up that can be obtained
when running with different number of processors and depending on the
imbalance present in the application. In these charts one can observe when
the maximums are achieved (i.e the maximum for 8 processors is a speed up
of 8).

Another interesting observation to understand better the behavior of the
algorithm is the number of lower peaks that presents each line. We can see
that the more number of processors used the more number of lower peaks.
If we concentrate in Figure A.8 in the line representing the execution with
8 processors we can see that the lower peaks represent the “change” in the
distribution of cpus. If we calculate the distribution for the different % of
imbalance we will be able to check this. For an imbalance of 1%-99% the
number of cpus assigned to the first MPI process is = 8∗1

100 = 0, 08 as we can
not assign less than one cpu per MPI process the distribution is: 1-7. For an
imbalance of 18%-82% the number of cpus assigned to the first MPI process
is = 8∗18

100 = 1, 44, so the distribution is still 1-7 because 1,44 is rounded to 1.
If we calculate the distribution for an imbalance of 19%-81% we obtain that
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Table A.1: Execution times with redistribution of cpus model
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Figure A.8: Speed up for 2 to 8 cpus per node with redistribution model

the number of processors assigned to the first MPI process is = 8∗19
100 = 1, 52

in this case 1,52 is rounded to 2, then the distribution of cpus is 2-6.
If we repeat this process for the other peaks we will find out that the

lower peaks correspond to the changes of distribution or what is the same,
that the values in the number of cpus before rounding them is close to X,5.
On the other hand, the higher peaks correspond to the values close to a whole
number. As an example we can calculate the distribution for an imbalance
of 12%-88% = 8∗12

100 = 0, 96 and for 13%-87% = 8∗13
100 = 1, 04, both are close

to 1.

191



Appendix A. DWB Algorithm Limits

Figure A.9: Speed up for 8 to 16 cpus per node with redistribution model
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AppendixB
LeWI Algorithm Limits

In this section we are going to study the limitations of the LeWI algorithm.
The limitation that we have observed for this algorithm is the number of
parallel regions between MPI calls. This is due to the fact that with the
current programming model we are using (OpenMP) we can only increase or
decrease the number of threads per process before starting a parallel loop.

To show this effect in Figure B.1 are represented different situations, the
first one (Figure B.1(a)) presents an imbalance of 35%-65% and the applica-
tion have two loops, when the first process finishes its computation and lends
the cpus the second process have just started the second loop (and last one)
therefor the second process will not be able to use the lent cpus and there
will not be any improvement in the execution time respect the original.

Let’s see now an example with the same imbalance (35%-65%) but in this
case it has 3 loops per iteration (Figure B.1(b)). Now when the first process
finishes the computation phase and lends the cpus the second process is in
the middle of the second loop. In this case when the second process starts
the third loop it will have more processors available and will be able to use
them for the last loop (the loops that are able to use the lent cpus are marked
with a thicker line). - To show that the potential of the algorithm not only
depends on the number of loops in Figure B.1(c) we show a case with 2 loops
as the first example but a slightly different imbalance (30%-70%). In this
scenario the first process gets into the communication phase and lends the
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(a) 35%-65% - 2 Loops

(b) 35%-65% - 3 Loops

(c) 30%-70% - 2 Loops

Figure B.1: Example of impact of the number of loops and the imbalance in
the performance of LeWI

cpus at the end of the first loop of the first process. When the second process
starts the second loop it has available the recently lent cpus and adds them
to the computation.

In the first part of this section we are going to evaluate the behavior of
the model when running with different number of loops per iteration. On the
second part we will try to determine if there is a limitation in the size of the
loops and which is it.

All the data presented in this section has been obtained running PILS,
the synthetic application introduced in Section 3.1. The application have
been executed in Marenostrum2 always with 4 cpus per node and 2 MPIs
processes. When evaluating the impact of the number of loops per iteration
the global computational load of the application is constant but divided in
different number of loops.
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Number of loops per iteration

In this subsection we try to determine the minimum number of loops neces-
sary per iteration to obtain good performance results with the LeWI algo-
rithm.

The experiments contain from 1 to 8 loops. We must keep in mind that
the load is always the same, but divided in different number of loops. In the
case of one loop there is nothing the DLB library with LeWI can do, but we
show it to check that no overhead is introduced and to keep it as reference.
In the experiments we show all the loops have the same amount of load.

As we have done previously in the other sections we have executed all the
experiments with all the imbalances from 1%-99% to 50%-50%
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Figure B.2: Average time versus Number of Loops

In Figure B.2 is shown the average execution time obtained with all the
imbalances when running the original application with DLB using the LeWI
algorithm and without DLB (label Original).

These charts show that with one loop nothing can be done but with just
2 loops some improvement is possible. The minimum desirable seems to be
around 4 loops per iteration because is where the line seems to stabilize. With
4 loops when running with LeWI we can obtain an speed up of 3,6 compared
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with the 2,7 that is obtained by the application without DLB. Now we are
going to see more in detail what happens with the different imbalances.
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Figure B.3: Execution time 1 to 8 loops with LeWI versus original

In Figure B.3 we can see the execution time spent to run the synthetic
application with LeWI versus the application without DLB. In the X axis
we can see the number of loops in which the load is divided and in a smaller
scale the % of imbalance present in the application. The imbalance goes from
1 to 50% (left to right). In the Y axis is represented the execution time of
the application in seconds.

The red area represents the time spent with LeWI and the green line the
time spent with the application without LeWI. The difference between the
two areas is the time we are gaining when using LeWI versus the execution
of the original application without dynamic load balancing.

As we said before, the global load of the application is the same inde-
pendently of the number of loops; so we can see that when running the
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application without DLB the execution time behaves the same for the differ-
ent number of loops. But the execution time when running the application
with LeWI decreases as the number of loops increase.

For the case of just one parallel loop there is nothing that LeWI can do
and it has the same area as the original version of the application.

In this chart we can observe that with LeWI there are the same number of
higher peaks as loops, that effect is due to the fact that depending on the %
of imbalance that appears in the application the threads that are lent arrive
in a different moment of the loop, and depending on the moment that the
threads are available (beginning, middle, end...) they can be used a different
amount of time.

400

450

500

550

600

650

700

750

800

1 2 3 4 5 6 7 8

T
im

e
 (

s)
 |

 S
t.

 D
e

sv
ia

ti
o

n

Num Loops

Original

LeWI

Figure B.4: Standard Deviation in the average time

In Figure B.4 the execution time is represented in the Y axis, the number
of loops appear in the X axis. In this chart is also represented the standard
deviation of the average time for the original execution and the execution
with LeWI.
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The yellow bars represent the execution time of the original application
and their standard deviation, both are constant for all the number of loops
because as we said it is independent from how is distributed the load as long
as it is always the same amount.

On the other hand the red bars represent the average when running the
application with the DLB library and LeWI. In this case we can see how
the execution time decreases as the number of loops increases and also the
standard deviation decreases.

The conclusion is that an application should contain at least 4 loops per
iteration to obtain good performance results. By the way, with 2 and 3 loops
some performance can be obtained and, as there is no overhead introduced,
LeWI can be used anyway with an application with this characteristics to
try to obtain some benefits.

Size of loops per iteration

In the previous subsection we analyzed the number of loops per iteration
necessary to get good results with LeWI. In the following subsection we are
going to study the impact of the size of the loops on the performance of
LeWI.

Although the experiments we have done until now show that the DLB
library does not introduce overhead the duration of the loops can have impact
in the performance. In case the loops are too small can happen that the lent
cpus don’t have time to be used in the next loops.

Load Num Loops / Load per loop

Class Total 1 2 4 8 16

A 1600 1600 800 400 200 100

B 3200 3200 1600 800 400 200

C 6400 6400 3200 1600 800 400

D 12800 12800 6400 3200 1600 800

E 25600 25600 12800 6400 3200 1600

F 51200 51200 25600 12800 6400 3200

G 102400 102400 51200 25600 12800 6400

Table B.1: Load for each class
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In table B.1 is shown the load that corresponds to each class. The number
that appears in the table represent the work that should be done, and it
is divided between the two MPI processes depending on the corresponding
imbalance.

Duration Loop in serial (ms)

Class 1 2 4 8 16

A 332 166 83 41 21

B 663 332 166 83 41

C 1326 663 331 166 83

D 2653 1326 663 332 166

E 5305 2652 1326 663 331

F 10607 5303 2652 1326 663

G 21216 10610 5304 2651 1326

Table B.2: Duration of each loop in serial execution depending on the class
and the number of loops

We have tried with different classes of load and for each load with different
number of loops. Class A is the smallest and G is the biggest. The smallest
class has been dimensioned by the higher number of loops that is 16 and if
the load is 100 in the case of an imbalance of 1%-99% the MPI process 1 will
get 1 loop iteration and the MPI process 2 will get 99.

In table B.2 we can find the duration in milliseconds of the loops corre-
sponding to each class and number of loops. The time shown in the table has
been calculated executing the original application without parallelism. This
means that in the parallel version of the application the duration of a loop
of class A with 16 loops if the imbalance is %50-%50 is ' 21ms

4 = 5, 25ms,
but with a different degree of imbalance the duration will be different.

We have run the synthetic application with classes A, B , C, D, E, F and
G and number of loops 1, 2, 4, 8 and 16. The execution time obtained can be
seen in Figure B.5 and B.6 for classes G and A, the smallest and the biggest.

In Figure B.5 can be seen an almost perfect pattern as the loops are very
big and the behavior is very regular, we will take this pattern as the ideal to
be obtained and we are going to compare it with the smallest class to see the
deviation that it presents.
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Figure B.5: Execution time with LeWI and load class G
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Figure B.6: Execution time with LeWI and load class A
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Figure B.7: Speed up with LeWI classes A, B, C, D, E, F and G

The execution time for class A, as can be see in Figure B.6, has much
variation. With one loop the behavior is more or less the same as for class
G. For two loops it is not difficult to follow the pattern at least for the
more imbalanced experiments. The worst performance is found for the more
balanced experiments from 35%-65% to 50%-50%. This can be due to the
fact that the time spent in each loop is smaller as the application is more
balanced, and the time “remaining” to exchange processors is also shorter.

What it is important to notice from this data is that the performance
for class A is not the best one (as can be obtained with bigger classes) but
that it only performs worst than the original in few cases, that is when the
application is not imbalanced (45%-55%).

The comparison between the performance of all the classes can be seen
in Figure B.7. In this chart is shown the speed up for each class. In the X
axis is shown the number of loops and the % of imbalance.

The performance drops for class A and B, and specially when there are
more than 4 loops (remember that the size of the loops is not constant per
class, but that the more loops the smaller they are). On the other hand
classes C, D, E, F and G present almost no difference in their performance
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It is interesting to notice from this evaluation that for classes bigger than
B and more than 4 loops the speed up obtained is over 3,5 that is quite close
to the ideal of 4.

We have seen that for loops smaller than class B and 4 loops the perfor-
mance drops a bit. This is equivalent to approximately a loop of 83 millisec-
onds in serial and around 20,75 milliseconds in parallel with 2 MPIs and 2
OpenMP threads per MPI.
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