
Garlic: User Guide

Rodrigo Arias Mallo

Barcelona Supercomputing Center

ABSTRACT

This document contains all the information to configure and use the
garlic benchmark. All stages from the development to the publication
are covered, as well as the introductory steps required to setup the
machines.

Generated on 2023-09-14

Git commit: 3a4062ac04be6263c64a481420d8e768c2521b80

1. Introduction
The garlic framework is designed to fulfill all the requirements of an experimenter
in all the steps up to publication. The experience gained while using it suggests
that we move along three stages despicted in the following diagram:

Source
code

Development Program Experimentation Results
Data

exploration
Figures

In the development phase the experimenter changes the source code in order to in-
troduce new features or fix bugs. Once the program is considered functional, the
next phase is the experimentation, where several experiment configurations are
tested to evaluate the program. It is common that some problems are spotted dur-
ing this phase, which lead the experimenter to go back to the development phase
and change the source code.

Finally, when the experiment is considered completed, the experimenter
moves to the next phase, which envolves the exploration of the data generated by
the experiment. During this phase, it is common to generate results in the form of
plots or tables which provide a clear insight in those quantities of interest. It is also
common that after looking at the figures, some changes in the experiment configu-
ration need to be introduced (or even in the source code of the program).

Therefore, the experimenter may move forward and backwards along three
phases several times. The garlic framework provides support for all the three
stages (with different degrees of madurity).

1.1. Machines and clusters
Our current setup employs multiple machines to build and execute the experi-
ments. Each cluster and node has it’s own name and will be different in other clus-
ters. Therefore, instead of using the names of the machines we use machine classes
to generalize our setup. Those machine clases currently correspond to a physical

-2-

machine each:

• Builder (xeon07): runs the nix-daemon and performs the builds in /nix. Re-
quires root access to setup the nix-daemon with multiple users.

• Target (MareNostrum 4 compute nodes): the nodes where the experiments are
executed. It doesn’t need to have /nix installed or root access.

• Login (MareNostrum 4 login nodes): used to allocate resources and run jobs. It
doesn’t need to have /nix installed or root access.

• Laptop (where the keyboard is attached, can be anything): used to connect to the
other machines. No root access is required or /nix, but needs to be able to con-
nect to the builder.

The machines don’t need to be different of each others, as one machine can imple-
ment several classes. For example the laptop can act as the builder too but is not
recommended. Or the login machine can also perform the builds, but is not possi-
ble yet in our setup.

1.2. Reproducibility
An effort to facilitate the reproducibility of the experiments has been done, with
varying degrees of success. The names of the different levels of reproducibility
have not been yet standarized, so we define our own to avoid any confusion. We
define three levels of reproducibility based on the people and the machine in-
volved:

• R0: The same people on the same machine obtain the same result

• R1: Different people on the same machine obtain the same result

• R2: Different people on a different machine obtain the same result

The garlic framework distinguishes two types of results: the result of building a der-
ivation (usually building a binary or a library from the sources) and the results of
the execution of an experiment (typically those are the measurements performed dur-
ing the execution of the program of study).

For those two types, the meaning of same result is different. In the case of
building a binary, we define the same result if it is bit-by-bit identical. In the pack-
ages provided by nixos is usually the case except some rare cases. One example is
that during the build process, a directory is listed by the order of the inodes, giving
a random order which is different between builds. These problems are tracked by
the r13y 〈https://r13y.com/〉 project. About 99% of the derivations of the mini-
mal package set achieve the R2 property.

On the other hand, the results of the experiments are always bit-by-bit differ-
ent. So we change the definition to state that they are the same if the conclusions
that can be obtained are the same. In particular, we assume that the results are
within the confidence interval. With this definition, all experiments are currently
R1. The reproducibility level R2 is not posible yet as the software is compiled to
support only the target machine, with an specific interconnection.

-3-

2. Preliminary steps
The peculiarities of our setup require that users perform some actions to use the
garlic framework. The content of this section is only intended for the users of our
machines, but can serve as reference in other machines.

The names of the machine classes are used in the command line prompt in-
stead of the actual name of the machine, to indicate that the command needs to be
executed in the stated machine class, for example:

builder% echo hi
hi

When the machine class is not important, it is ignored and only the % prompt ap-
pears.

2.1. Configure your laptop
To easily connect to the builder (xeon07) in one step, configure the SSH client to
perform a jump over the Cobi login node. The ProxyJump directive is only available
in version 7.3 and upwards. Add the following lines in the ~/.ssh/config file of
your laptop:

Host cobi
HostName ssflogin.bsc.es
User your-username-here

Host xeon07
ProxyJump cobi
HostName xeon07
User your-username-here

You should be able to connect to the builder typing:

laptop$ ssh xeon07

To spot any problems try with the -v option to enable verbose output.

2.2. Configure the builder (xeon07)
In order to use nix you would need to be able to download the sources from Inter-
net. Usually the download requires the ports 22, 80 and 443 to be open for outgoing
traffic.

Check that you have network access in xeon07 provided by the environment
variables http_proxy and https_proxy. Try to fetch a webpage with curl, to ensure the
proxy is working:

xeon07$ curl x.com
x

2.2.1. Create a new SSH key

There is one DSA key in your current home called "cluster" that is no longer sup-
ported in recent SSH versions and should not be used. Before removing it, create a
new one without password protection leaving the passphrase empty (in case that
you don’t have one already created) by running:

-4-

xeon07$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (~/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ~/.ssh/id_rsa.
Your public key has been saved in ~/.ssh/id_rsa.pub.
...

By default it will create the public key at ~/.ssh/id_rsa.pub. Then add the
newly created key to the authorized keys, so you can connect to other nodes of the
Cobi cluster:

xeon07$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Finally, delete the old "cluster" key:

xeon07$ rm ~/.ssh/cluster ~/.ssh/cluster.pub

And remove the section in the configuration ~/.ssh/config where the key was
assigned to be used in all hosts along with the StrictHostKeyChecking=no op-
tion. Remove the following lines (if they exist):

Host *
IdentityFile ~/.ssh/cluster
StrictHostKeyChecking=no

By default, the SSH client already searchs for a keypair called ~/.ssh/id_rsa
and ~/.ssh/id_rsa.pub, so there is no need to manually specify them.

You should be able to access the login node with your new key by using:

xeon07$ ssh ssfhead

2.2.2. Authorize access to the repository

The sources of BSC packages are usually downloaded directly from the PM git
server, so you must be able to access all repositories without a password prompt.

Most repositories are open to read for logged in users, but there are some ex-
ceptions (for example the nanos6 repository) where you must have explicitly
granted read access.

Copy the contents of your public SSH key in ~/.ssh/id_rsa.pub and
paste it in GitLab at

https://pm.bsc.es/gitlab/profile/keys

Finally verify the SSH connection to the server works and you get a greeting from
the GitLab server with your username:

xeon07$ ssh git@bscpm03.bsc.es
PTY allocation request failed on channel 0
Welcome to GitLab, @rarias!
Connection to bscpm03.bsc.es closed.

Verify that you can access the nanos6 repository (otherwise you first need to ask to
be granted read access), at:

https://pm.bsc.es/gitlab/nanos6/nanos6

Finally, you should be able to download the nanos6 git repository without any
password interaction by running:

xeon07$ git clone git@bscpm03.bsc.es:nanos6/nanos6.git

Which will create the nanos6 directory.

-5-

2.2.3. Authorize access to MareNostrum 4

You will also need to access MareNostrum 4 from the xeon07 machine, in order to
run experiments. Add the following lines to the ~/.ssh/config file and set your
user name:

Host mn0 mn1 mn2
User <your user name in MN4>

Then copy your SSH key to MareNostrum 4 (it will ask you for your login pass-
word):

xeon07$ ssh-copy-id -i ~/.ssh/id_rsa.pub mn1

Finally, ensure that you can connect without a password:

xeon07$ ssh mn1
...
login1$

2.2.4. Clone the bscpkgs repository

Once you have Internet and you have granted access to the PM GitLab repositories
you can begin building software with nix. First ensure that the nix binaries are
available from your shell in xeon07:

xeon07$ nix --version
nix (Nix) 2.3.6

Now you are ready to build and install packages with nix. Clone the bscpkgs
repository:

xeon07$ git clone git@bscpm03.bsc.es:rarias/bscpkgs.git

Nix looks in the current folder for a file named default.nix for packages, so go
to the bscpkgs directory:

xeon07$ cd bscpkgs

Now you should be able to build nanos6 (which is probably already compiled):

xeon07$ nix-build -A bsc.nanos6
...
/nix/store/...2cm1ldx9smb552sf6r1-nanos6-2.4-6f10a32

The installation is placed in the nix store (with the path stated in the last line of the
build process), with the result symbolic link pointing to the same location:

xeon07$ readlink result
/nix/store/...2cm1ldx9smb552sf6r1-nanos6-2.4-6f10a32

2.2.5. Configure garlic

In order to launch experiments in the target machine, it is required to configure nix
to allow a directory to be available during the build process, where the results will
be stored before being copied in the nix store. Create a new garlic directory in
your personal cache directory and copy the full path:

xeon07$ mkdir -p ~/.cache/garlic
xeon07$ readlink -f ~/.cache/garlic
/home/Computational/rarias/.cache/garlic

Then create the nix configuration directory (if it has not already been created):

xeon07$ mkdir -p ~/.config/nix

And add the following line in the ~/.config/nix/nix.conf file, replacing it
with the path you copied before:

-6-

extra-sandbox-paths = /garlic=/home/Computational/rarias/.cache/garlic

This option creates a virtual directory called /garlic inside the build environ-
ment, whose contents are the ones you specify at the right hand side of the equal
sign (in this case the ~/.cache/garlic directory). It will be used to allow the re-
sults of the experiments to be passed to nix from the target machine.

2.2.6. Run the garlic daemon (optional)

The garlic benchmark has a daemon which can be used to automatically launch the
experiments in the target machine on demand, when they are required to build
other derivations, so they can be launched without user interaction. The daemon
creates some FIFO pipes to communicate with the build environment, and must be
running to be able to run the experiments. To execute it, go to the bscpkgs/gar-
lic directory and run

xeon07$ nix-shell
nix-shell$

to enter the nix shell (or specify the path to the garlic/shell.nix file as argu-
ment). Then, run the daemon inside the nix shell:

nix-shell$ garlicd
garlicd: Waiting for experiments ...

Notice that the daemon stays running in the foreground, waiting for experiments.
At this moment, it can only process one experiment at a time.

2.3. Configure the login and target (MareNostrum 4)
In order to execute the programs in MareNostrum 4, you first need load some utili-
ties in the PATH. Add to the end of the file ~/.bashrc in MareNostrum 4 the fol-
lowing line:

export PATH=/gpfs/projects/bsc15/nix/bin:$PATH

Then logout and login again (our source the ~/.bashrc file) and check that now
you have the nix-develop command available:

login1$ which nix-develop
/gpfs/projects/bsc15/nix/bin/nix-develop

The new utilities are available both in the login nodes and in the compute (target)
nodes, as they share the file system over the network.

-7-

3. Development
During the development phase, a functional program is produced by modifying its
source code. This process is generally cyclic: the developer needs to compile, debug
and correct mistakes. We want to minimize the delay times, so the programs can be
executed as soon as needed, but under a controlled environment so that the same
behavior occurs during the experimentation phase.

In particular, we want that several developers can reproduce the same devel-
opment environment so they can debug each other programs when reporting bugs.
Therefore, the environment must be carefully controlled to avoid non-reproducible
scenarios.

The current development environment provides an isolated shell with a clean
environment, which runs in a new mount namespace where access to the filesys-
tem is restricted. Only the project directory and the nix store are available (with
some other exceptions), to ensure that you cannot accidentally link with the wrong
library or modify the build process with a forgotten environment variable in the
~/.bashrc file.

3.1. Getting the development tools
To create a development environment, first copy or download the sources of your
program (not the dependencies) in a new directory placed in the target machine
(MareNostrum 4).

The default environment contains packages commonly used to develop pro-
grams, listed in the garlic/index.nix file:

develop = let
commonPackages = with self; [

coreutils htop procps-ng vim which strace
tmux gdb kakoune universal-ctags bashInteractive
glibcLocales ncurses git screen curl
Add more nixpkgs packages here...

];
bscPackages = with bsc; [

slurm clangOmpss2 icc mcxx perf tampi impi
Add more bsc packages here...

];
...

If you need additional packages, add them to the list, so that they become available
in the environment. Those may include any dependency required to build your
program.

Then use the build machine (xeon07) to build the garlic.develop derivation:

build% nix-build -A garlic.develop
...
build% grep ln result
ln -fs /gpfs/projects/.../bin/stage1 .nix-develop

Copy the ln command and run it in the target machine (MareNostrum 4), inside the
new directory used for your program development, to create the link .nix-develop
(which is used to remember your environment). Several environments can be
stored in different directories using this method, with different packages in each
environment. You will need to rebuild the garlic.develop derivation and update the
.nix-develop link after the package list is changed. Once the environment link is cre-
ated, there is no need to repeat these steps again.

Before entering the environment, you will need to access the required re-
sources for your program, which may include several compute nodes.

-8-

3.2. Allocating resources for development
Our target machine (MareNostrum 4) provides an interactive shell, that can be re-
quested with the number of computational resources required for development. To
do so, connect to the login node and allocate an interactive session:

% ssh mn1
login% salloc ...
target%

This operation may take some minutes to complete depending on the load of the
cluster. But once the session is ready, any subsequent execution of programs will be
immediate.

3.3. Accessing the developement environment
The utility program nix-develop has been designed to access the development

environment of the current directory, by looking for the .nix-develop file. It creates a
namespace where the required packages are installed and ready to be used. Now
you can access the newly created environment by running:

target% nix-develop
develop%

The spawned shell contains all the packages pre-defined in the garlic.develop deri-
vation, and can now be accessed by typing the name of the commands.

develop% which gcc
/nix/store/azayfhqyg9...s8aqfmy-gcc-wrapper-9.3.0/bin/gcc
develop% which gdb
/nix/store/1c833b2y8j...pnjn2nv9d46zv44dk-gdb-9.2/bin/gdb

If you need additional packages, you can add them in the garlic/index.nix file as
mentioned previously. To keep the same current resources, so you don’t need to
wait again for the resources to be allocated, exit only from the development shell:

develop% exit
target%

Then update the .nix-develop link and enter into the new develop environment:

target% nix-develop
develop%

3.4. Execution
The allocated shell can only execute tasks in the current node, which may be
enough for some tests. To do so, you can directly run your program as:

develop$./program

If you need to run a multi-node program, typically using MPI communications,
then you can do so by using srun. Notice that you need to allocate several nodes
when calling salloc previously. The srun command will execute the given program
outside the development environment if executed as-is. So we re-enter the develop
environment by calling nix-develop as a wrapper of the program:

develop$ srun nix-develop ./program

3.5. Debugging
The debugger can be used to directly execute the program if is executed in only
one node by using:

develop$ gdb ./program

-9-

Or it can be attached to an already running program by using its PID. You will
need to first connect to the node running it (say target2), and run gdb inside the
nix-develop environment. Use squeue to see the compute nodes running your pro-
gram:

login$ ssh target2
target2$ cd project-develop
target2$ nix-develop
develop$ gdb -p $pid

You can repeat this step to control the execution of programs running in different
nodes simultaneously.

In those cases where the program crashes before being able to attach the de-
bugger, enable the generation of core dumps:

develop$ ulimit -c unlimited

And rerun the program, which will generate a core file that can be opened by gdb
and contains the state of the memory when the crash happened. Beware that the
core dump file can be very large, depending on the memory used by your program
at the crash.

3.6. Git branch name convention
The garlic benchmark imposes a set of requirements to be meet for each application
in order to coordinate the execution of the benchmark and the gathering process of
the results.

Each application must be available in a git repository so it can be included
into the garlic benchmark. The different combinations of programming models and
communication schemes should be each placed in one git branch, which are re-
ferred to as benchmark branches. At least one benchmark branch should exist and
they all must begin with the prefix garlic/ (other branches will be ignored).

The branch name is formed by adding keywords separated by the "+" charac-
ter. The keywords must follow the given order and can only appear zero or once
each. At least one keyword must be included. The following keywords are avail-
able:

mpi A significant fraction of the communications uses only the standard
MPI (without extensions like TAMPI).

tampi A significant fraction of the communications uses TAMPI.

send A significant part of the MPI communication uses the blocking family
of methods (MPI_Send, MPI_Recv, MPI_Gather...).

isend A significant part of the MPI communication uses the non-blocking
family of methods (MPI_Isend, MPI_Irecv, MPI_Igather...).

rma A significant part of the MPI communication uses remote memory ac-
cess (one-sided) methods (MPI_Get, MPI_Put...).

seq The complete execution is sequential in each process (one thread per
process).

omp A significant fraction of the execution uses the OpenMP programming
model.

oss A significant fraction of the execution uses the OmpSs-2 programming
model.

task A significant part of the execution involves the use of the tasking
model.

taskfor A significant part of the execution uses the taskfor construct.

fork A significant part of the execution uses the fork-join model (including
hybrid programming techniques with parallel computations and se-
quential communications).

-10-

simd A significant part of the computation has been optimized to use SIMD
instructions.

In the Appendix A 〈see below〉 there is a flowchart to help the decision process of
the branch name. Additional user defined keywords may be added at the end us-
ing the separator "+" as well. User keywords must consist of capital alphanumeric
characters only and be kept short. These additional keywords must be different
(case insensitive) to the already defined above. Some examples:

garlic/mpi+send+seq
garlic/mpi+send+omp+fork
garlic/mpi+isend+oss+task
garlic/tampi+isend+oss+task
garlic/tampi+isend+oss+task+COLOR
garlic/tampi+isend+oss+task+COLOR+BTREE

3.7. Initialization time
It is common for programs to have an initialization phase prior to the execution of
the main computation task which is the objective of the study. The initialization
phase is usually not considered when taking measurements, but the time it takes to
complete can limit seriously the amount of information that can be extracted from
the computation phase. As an example, if the computation phase is in the order of
seconds, but the initialization phase takes several minutes, the number of runs
would need to be set low, as the units could exceed the time limits. Also, the exper-
imenter may be reluctant to modify the experiments to test other parameters, as the
waiting time for the results is unavoidably large.

To prevent this problem the programs must reduce the time of the initializa-
tion phase to be no larger than the computation time. To do so, the initialization
phase can be optimized either with parallelization, or it can be modified to store
the result of the initialization to the disk to be later at the computation phase. In the
garlic framework an experiment can have a dependency over the results of another
experiment (the results of the initialization). The initialization results will be
cached if the derivation is kept invariant, when modifying the computation phase
parameters.

3.8. Measurement of the execution time
The programs must measure the wall time of the computation phase following a
set of rules. The way in which the wall time is measured is very important to get
accurate results. The measured time must be implemented by using a monotonic
clock which is able to correct the drift of the oscillator of the internal clock due to
changes in temperature. This clock must be measured in C and C++ with:

clock_gettime(CLOCK_MONOTONIC, &ts);

A helper function can be used the approximate value of the clock in a double preci-
sion float, in seconds:

double get_time()
{

struct timespec tv;
if(clock_gettime(CLOCK_MONOTONIC, &tv) != 0)
{

perror("clock_gettime failed");
exit(EXIT_FAILURE);

}
return (double)(ts.tv_sec) +

(double)ts.tv_nsec * 1.0e-9;
}

The start and end points must be measured after the synchronization of all the

-11-

processes and threads, so the complete computation work can be bounded to fit in-
side the measured interval. An example for a MPI program:

double start, end, delta_time;
MPI_Barrier();
start = get_time();
run_simulation();
MPI_Barrier();
end = get_time();
delta_time = end - start;

3.9. Format of the execution time
The measured execution time must be printed to the standard output (stdout) in
scientific notation with at least 7 significative digits. The following the printf for-
mat (or the strict equivalent in other languages) must be used:

printf("time %e\n", delta_time);

The line must be printed alone and only once: for MPI programs, only one process
shall print the time:

if(rank == 0) printf("time %e\n", delta_time);

Other lines can be printed in the stdout, but without the time prefix, so that the fol-
lowing pipe can be used to capture the line:

% ./app | grep "ˆtime"
1.234567e-01

Ensure that your program follows this convention by testing it with the above grep
filter; otherwise the results will fail to be parsed when building the dataset with the
execution time.

-12-

4. Experimentation
During the experimentation, a program is studied by running it and measuring
some properties. The experimenter is in charge of the experiment design, which is
typically controlled by a single nix file placed in the garlic/exp subdirectory.
Experiments are formed by several experimental units or simply units. A unit is the
result of each unique configuration of the experiment (typically involves the carte-
sian product of all factors) and consists of several shell scripts executed sequen-
tially to setup the execution environment, which finally launch the actual program
being analyzed. The scripts that prepare the environment and the program itself
are called the stages of the execution and altogether form the execution pipeline or
simply the pipeline. The experimenter must know with very good details all the
stages involved in the pipeline, as they have a large impact on the execution.

Additionally, the execution time is impacted by the target machine in which
the experiments run. The software used for the benchmark is carefully configured
and tuned for the hardware used in the execution; in particular, the experiments
are designed to run in MareNostrum 4 cluster with the SLURM workload manager
and the Omni-Path interconnection network. In the future we plan to add support
for other clusters in order to execute the experiments in other machines.

4.1. Isolation
The benchmark is designed so that both the compilation of every software package
and the execution of the experiment is performed under strict conditions. We can
ensure that two executions of the same experiment are actually running the same
program in the same software environment.

All the software used by an experiment is included in the nix store which is,
by convention, located at the /nix directory. Unfortunately, it is common for li-
braries to try to load software from other paths like /usr or /lib. It is also com-
mon that configuration files are loaded from /etc and from the home directory of
the user that runs the experiment. Additionally, some environment variables are
recognized by the libraries used in the experiment, which change their behavior.
As we cannot control the software and configuration files in those directories, we
couldn’t guarantee that the execution behaves as intended.

In order to avoid this problem, we create a sandbox where only the files in the
nix store are available (with some other exceptions). Therefore, even if the libraries
try to access any path outside the nix store, they will find that the files are not there
anymore. Additionally, the environment variables are cleared before entering the
environment (with some exceptions as well).

4.2. Execution pipeline
Several predefined stages form the standard execution pipeline and are defined in
the stdPipeline array. The standard pipeline prepares the resources and the environ-
ment to run a program (usually in parallel) in the compute nodes. It is divided in
two main parts: connecting to the target machine to submit a job and executing the
job. Finally, the complete execution pipeline ends by running the actual program,
which is not part of the standard pipeline, as should be defined differently for each
program.

4.2.1. Job submission

Some stages are involved in the job submission: the trebuchet stage connects via ssh
to the target machine and executes the next stage there. Once in the target machine,
the runexp stage computes the output path to store the experiment results, using
the user in the target machine and changes the working directory there. In
MareNostrum 4 the output path is at /gpfs/projects/bsc15/gar-
lic/$user/out. Then the isolate stage is executed to enter the sandbox and the
experiment stage begins, which creates a directory to store the experiment output,
and launches several unit stages.

-13-

Each unit executes a sbatch stage which runs the sbatch(1) program with a job
script that simply calls the next stage. The sbatch program internally reads the
/etc/slurm/slurm.conf file from outside the sandbox, so we must explicitly
allow this file to be available, as well as the munge socket used for authentication
by the SLURM daemon. Once the jobs are submitted to SLURM, the experiment
stage ends and the trebuchet finishes the execution. The jobs will be queued for ex-
ecution without any other intervention from the user.

The rationale behind running sbatch from the sandbox is because the options
provided in environment variables override the options from the job script. There-
fore, we avoid this problem by running sbatch from the sandbox, where the inter-
fering environment variables are removed. The sbatch program is also provided in
the nix store, with a version compatible with the SLURM daemon running in the
target machine.

4.2.2. Job execution

Once an unit job has been selected for execution, SLURM allocates the resources
(usually several nodes) and then selects one of the nodes to run the job script: it is
not executed in parallel yet. The job script runs from a child process forked from
on of the SLURM daemon processes, which are outside the sandbox. Therefore, we
first run the isolate stage to enter the sandbox again.

The next stage is called control and determines if enough data has been gener-
ated by the experiment unit or if it should continue repeating the execution. At the
current time, it is only implemented as a simple loop that runs the next stage a
fixed amount of times (by default, it is repeated 30 times).

The following stage is srun which launches several copies of the next stage to
run in parallel (when using more than one task). Runs one copy per task, effec-
tively creating one process per task. The CPUs affinity is configured by the parame-
ter --cpu-bind and is important to set it correctly (see more details in the srun(1)
manual). Appending the verbose value to the cpu bind option causes srun to print
the assigned affinity of each task, which is very valuable when examining the exe-
cution log.

The mechanism by which srun executes multiple processes is the same used
by sbatch, it forks from a SLURM daemon running in the computing nodes. There-
fore, the execution begins outside the sandbox. The next stage is isolate which en-
ters again the sandbox in every task. All remaining stages are running now in par-
allel.

4.2.3. The program

At this point in the execution, the standard pipeline has been completely executed,
and we are ready to run the actual program that is the matter of the experiment.
Usually, programs require some arguments to be passed in the command line. The
exec stage sets the arguments (and optionally some environment variables) and ex-
ecutes the last stage, the program.

The experimenters are required to define these last stages, as they define the
specific way in which the program must be executed. Additional stages may be in-
cluded before or after the program run, so they can perform additional steps.

4.2.4. Stage overview

The complete execution pipeline using the standard pipeline is shown in the Table
1. Some properties are also reflected about the execution stages.

-14-

Stage Where Safe Copies User Std
trebuchet * no no yes yes
runexp login no no no yes
isolate login no no no yes
experiment login yes no no yes
unit login yes no no yes
sbatch login yes no no yes
isolate target no no no yes
control target yes no no yes
srun target yes no no yes
isolate target no yes no yes
exec target yes yes no no
program target yes yes no no

Table 1: The stages of a complete execution pipeline. The where column determines where
the stage is running, safe states if the stage begins the execution inside the sandbox, user if
it can be executed directly by the user, copies if there are several instances running in par-
allel and std if is part of the standard execution pipeline.

4.3. Writing the experiment
The experiments are generally written in the nix language as it provides very easy
management for the packages an their customization. An experiment file is formed
by several parts, which produce the execution pipeline when built. The experiment
file describes a function (which is typical in nix) and takes as argument an attribute
set with some common packages, tools and options:

{ stdenv, lib, bsc, stdexp, targetMachine, stages, garlicTools }:

The bsc attribute contains all the BSC and nixpkgs packages, as defined in the over-
lay. The stdexp contains some useful tools and functions to build the experiments,
like the standard execution pipeline, so you don’t need to redefine the stages in ev-
ery experiment. The configuration of the target machine is specified in the target-
Machine attribute which includes information like the number of CPUs per node or
the cache line length. It is used to define the experiments in such a way that they
are not tailored to an specific machine hardware (sometimes this is not posible). All
the execution stages are available in the stages attribute which are used when some
extra stage is required. And finally, the garlicTools attribute provide some functions
to aid common tasks when defining the experiment configuration

4.3.1. Experiment configuration

The next step is to define some variables in a let ... in ... ; construct, to be used
later. The first one, is the variable configuration of the experiment called varConf,
which include all the factors that will be changed. All the attributes of this set must
be arrays, even if they only contain one element:

varConf = {
blocks = [1 2 4];
nodes = [1];

};

In this example, the variable blocks will be set to the values 1, 2 and 4; while nodes
will remain set to 1 always. These variables are used later to build the experiment
configuration. The varConf is later converted to a list of attribute sets, where every
attribute contains only one value, covering all the combinations (the Cartesian
product is computed):

-15-

[{ blocks = 1; nodes = 1; }
{ blocks = 2; nodes = 1; }
{ blocks = 4; nodes = 1; }]

These configurations are then passed to the genConf function one at a time, which is
the central part of the description of the experiment:

genConf = var: fix (self: targetMachine.config // {
expName = "example";
unitName = self.expName + "-b" + toString self.blocks;
blocks = var.blocks;
cpusPerTask = 1;
tasksPerNode = self.hw.socketsPerNode;
nodes = var.nodes;

});

It takes as input one configuration from the Cartesian product, for example:

{ blocks = 2; nodes = 1; }

And returns the complete configuration for that input, which usually expand the
input configuration with some derived variables along with other constant param-
eters. The return value can be inspected by calling the function in the interactive
nix repl session:

nix-repl> genConf { blocks = 2; nodes = 1; }
{

blocks = 2;
cpusPerTask = 1;
expName = "example";
hw = { ... };
march = "skylake-avx512";
mtune = "skylake-avx512";
name = "mn4";
nixPrefix = "/gpfs/projects/bsc15/nix";
nodes = 1;
sshHost = "mn1";
tasksPerNode = 2;
unitName = "example-b2";

}

Some configuration parameters were added by targetMachine.config, such as the nix-
Prefix, sshHost or the hw attribute set, which are specific for the cluster they experi-
ment is going to run. Also, the unitName got assigned the proper name based on
the number of blocks, but the number of tasks per node were assigned based on
the hardware description of the target machine.

By following this rule, the experiments can easily be ported to machines with
other hardware characteristics, and we only need to define the hardware details
once. Then all the experiments will be updated based on those details.

4.3.2. Adding the stages

Once the configuration is ready, it will be passed to each stage of the execution
pipeline which will take the parameters it needs. The connection between the pa-
rameters and how they are passed to each stage is done either by convention or
manually. There is a list of parameters that are recognized by the standard pipeline
stages. For example the attribute nodes, it is recognized as the number of nodes in
the standard sbatch stage when allocating resources:

-16-

Stage Attribute Std Req Description
* nixPrefix yes yes Path to the nix store in the target
unit expName yes yes Name of the experiment
unit unitName yes yes Name of the unit
control loops yes yes Number of runs of each unit
sbatch cpusPerTask yes yes Number of CPUs per task (process)
sbatch jobName yes yes Name of the job
sbatch nodes yes yes Number of nodes allocated
sbatch ntasksPerNode yes yes Number of tasks (processes) per node
sbatch qos yes no Name of the QoS queue
sbatch reservation yes no Name of the reservation
sbatch time yes no Maximum allocated time (string)
exec argv no no Array of arguments to execve
exec env no no Environment variable settings
exec pre no no Code before the execution
exec post no no Code after the execution

Table 2: The attributes recognized by the stages in the execution pipeline. The column std

indicates if they are part of the standard execution pipeline. Some attributes are required
as indicated by the req column.

Other attribute names can be used to specify custom information used in addi-
tional stages. The two most common stages required to complete the pipeline are
the exec and the program. Let see an example of exec:

exec = {nextStage, conf, ...}: stages.exec {
inherit nextStage;
argv = ["--blocks" conf.blocks];

};

The exec stage is defined as a function that uses the predefined stages.exec stage,
which accepts the argv array, and sets the argv of the program. In our case, we fill
the argv array by setting the --blocks parameter to the number of blocks, specified in
the configuration in the attribute blocks. The name of this attribute can be freely
choosen, as long as the exec stage refers to it properly. The nextStage attribute is
mandatory in all stages, and is automatically set when building the pipeline.

The last step is to configure the actual program to be executed, which can be
specified as another stage:

program = {nextStage, conf, ...}: bsc.apps.example;

Notice that this function only returns the bsc.apps.example derivation, which will be
translated to the path where the example program is installed. If the program is lo-
cated inside a directory (typically bin), it must define the attribute programPath in
the bsc.apps.example derivation, which points to the executable program. An exam-
ple:

stdenv.mkDerivation {
...
programPath = "/bin/example";
...

};

4.3.3. Building the pipeline

With the exec and program stages defined and the ones provided by the standard
pipeline, the complete execution pipeline can be formed. To do so, the stages are
placed in an array, in the order they will be executed:

pipeline = stdexp.stdPipeline ++ [exec program];

-17-

The attribute stdexp.stdPipeline contains the standard pipeline stages, and we only
append our two defined stages exec and program. The pipeline is an array of func-
tions, and must be transformed in something that can be executed in the target ma-
chine. For that purpose, the stdexp provides the genExperiment function, which
takes the pipeline array and the list of configurations and builds the execution pipe-
line:

stdexp.genExperiment { inherit configs pipeline; }

The complete example experiment can be shown here:

{ stdenv, lib, stdexp, bsc, targetMachine, stages }:
with lib;
let

Initial variable configuration
varConf = {

blocks = [1 2 4];
nodes = [1];

};
Generate the complete configuration for each unit
genConf = c: targetMachine.config // rec {

expName = "example";
unitName = "${expName}-b${toString blocks}";
inherit (targetMachine.config) hw;
inherit (c) blocks nodes;
loops = 30;
ntasksPerNode = hw.socketPerNode;
cpusPerTask = hw.cpusPerSocket;
jobName = unitName;

};
Compute the array of configurations
configs = stdexp.buildConfigs {

inherit varConf genConf;
};
exec = {nextStage, conf, ...}: stages.exec {

inherit nextStage;
argv = ["--blocks" conf.blocks];

};
program = {nextStage, conf, ...}: bsc.garlic.apps.example;
pipeline = stdexp.stdPipeline ++ [exec program];

in
stdexp.genExperiment { inherit configs pipeline; }

4.3.4. Adding the experiment to the index

The experiment file must be located in a named directory inside the garlic/exp direc-
tory. The name is usually the program name. Once the experiment is placed in a
nix file, it must be added to the index of experiments, so it can be build. The index
is hyerarchically organized as attribute sets, with exp containing all the experi-
ments; exp.example the experiments of the example program; and exp.example.test1 re-
ferring to the test1 experiment of the example program. Additional attributes can be
added, like exp.example.test1.variantA to handle more details.

For this example we are going to use the attribute path exp.example.test and
add it to the index, in the garlic/exp/index.nix file. We append to the end of the attri-
bute set, the following definition:

-18-

...
example = {

test = callPackage ./example/test.nix { };
};

}

The experiment can now be built with:

builder% nix-build -A exp.example.test

4.4. Recommendations
The complete results generally take a long time to be finished, so it is advis-

able to design the experiments iteratively, in order to quickly obtain some feed-
back. Some recommendations: Start with one unit only. Set the number of runs low
(say 5) but more than one. Use a small problem size, so the execution time is low.
Set the time limit low, so deadlocks are caught early.

As soon as the first runs are complete, examine the results and test that every-
thing looks good. You would likely want to check: The resources where assigned as
intended (nodes and CPU affinity). No errors or warnings: look at stderr and std-
out logs. If a deadlock happens, it will run out of the time limit.

As you gain confidence over that the execution went as planned, begin in-
creasing the problem size, the number of runs, the time limit and lastly the number
of units. The rationale is that each unit that is shared among experiments gets as-
signed the same hash. Therefore, you can iteratively add more units to an experi-
ment, and if they are already executed (and the results were generated) is reused.

-19-

5. Post-processing
After the correct execution of an experiment the results are stored for further inves-
tigation. Typically the time of the execution or other quantities are measured and
presented later in a figure (generally a plot or a table). The postprocess pipeline con-
sists of all the steps required to create a set of figures from the results. Similarly to
the execution pipeline where several stages run sequentially,1 the postprocess pipe-
line is also formed by multiple stages executed in order.

The rationale behind dividing execution and postprocess is that usually the
experiments are costly to run (they take a long time to complete) while generating
a figure require less time. Refining the figures multiple times reusing the same ex-
perimental results doesn’t require the execution of the complete experiment, so the
experimenter can try multiple ways to present the data without waiting a large de-
lay.

5.1. Results
The results are generated in the same target machine where the experiment is exe-
cuted and are stored in the garlic out directory, organized into a tree structure fol-
lowing the experiment name, the unit name and the run number (governed by the
control stage):

|-- 6lp88vlj7m8hvvhpfz25p5mvvg7ycflb-experiment
| |-- 8lpmmfix52a8v7kfzkzih655awchl9f1-unit
| | |-- 1
| | | |-- stderr.log
| | | |-- stdout.log
| | | |-- ...
| | |-- 2
...

In order to provide an easier access to the results, an index is also created by taking
the expName and unitName attributes (defined in the experiment configuration) and
linking them to the appropriate experiment and unit directories. These links are
overwritten by the last experiment with the same names so they are only valid for
the last execution. The out and index directories are placed into a per-user direc-
tory, as we cannot guarantee the complete execution of each unit when multiple
users share units.

The messages printed to stdout and stderr are stored in the log files with the
same name inside each run directory. Additional data is sometimes generated by
the experiments, and is found in each run directory. As the generated data can be
very large, is ignored by default when fetching the results.

5.2. Fetching the results
Consider a program of interest for which an experiment has been designed to mea-
sure some properties that the experimenter wants to present in a visual plot. When
the experiment is launched, the execution pipeline (EP) is completely executed and
it will generate some results. In this escenario, the execution pipeline depends on
the program—any changes in the program will cause nix to build the pipeline
again using the updated program. The results will also depend on the execution
pipeline as well as the postprocess pipeline (PP) and the plot on the results. This
chain of dependencies can be shown in the following dependency graph:

Prog EP Result PP Plot

Ideally, the dependencies should be handled by nix, so it can detect any change
1 Rodrigo Arias Mallo, Garlic: the execution pipeline (2020).

-20-

and rebuild the necessary parts automatically. Unfortunately, nix is not able to
build the result as a derivation directly, as it requires access to the target machine
with several user accounts. In order to let several users reuse the same results from
a shared cache, we would like to use the nix store.

To generate the results from the experiment, we add some extra steps that
must be executed manually:

Prog EP Result

Run Fetch

PP Plot

The run and fetch steps are provided by the helper tool garlic(1), which launches
the experiment using the user credentials at the target machine and then fetches the
results, placing them in a directory known by nix. When the result derivation
needs to be built, nix will look in this directory for the results of the execution. If
the directory is not found, a message is printed to suggest the user to launch the
experiment and the build process is stopped. When the result is successfully built
by any user, is stored in the nix store and it won’t need to be rebuilt again until the
experiment changes, as the hash only depends on the experiment and not on the
contents of the results.

Notice that this mechanism violates the deterministic nature of the nix store,
as from a given input (the experiment) we can generate different outputs (each re-
sult from different executions). We knowingly relaxed this restriction by providing
a guarantee that the results are equivalent and there is no need to execute an exper-
iment more than once.

To force the execution of an experiment you can use the rev attribute which is
a number assigned to each experiment and can be incremented to create copies that
only differs on that number. The experiment hash will change but the experiment
will be the same, as long as the revision number is ignored along the execution
stages.

5.3. Postprocess stages
Once the results are completely generated in the target machine there are several
stages required to build a set of figures:

fetch— waits until all the experiment units are completed and then executes
the next stage. This stage is performed by the garlic(1) tool using the -F option and
also reports the current state of the execution.

store— copies from the target machine into the nix store all log files generated
by the experiment, keeping the same directory structure. It tracks the execution
state of each unit and only copies the results once the experiment is complete.
Other files are ignored as they are often very large and not required for the subse-
quent stages.

timetable— converts the results of the experiment into a NDJSON file with
one line per run for each unit. Each line is a valid JSON object, containing the exp,
unit and run keys and the unit configuration (as a JSON object) in the config key.
The execution time is captured from the standard output and is added in the time
key.

merge— one or more timetable datasets are joined, by simply concatenating
them. This step allows building one dataset to compare multiple experiments in
the same figure.

rPlot— one ot more figures are generated by a single R script2 which takes as
2 Winston Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data, O’Reilly

-21-

input the previously generated dataset. The path of the dataset is recorded in the
figure as well, which contains enough information to determine all the stages in the
execution and postprocess pipelines.

5.4. Current setup
As of this moment, the build machine which contains the nix store is xeon07 and the
target machine used to run the experiments is Mare Nostrum 4 with the output di-
rectory placed at /gpfs/projects/bsc15/garlic. By default, the experiment
results are never deleted from the target so you may want to remove the ones al-
ready stored in the nix store to free space.

Media (2020). 2nd edition.

-22-

Appendix A: Branch name diagram

Start

MPI-based?

Yes

TAMPI?

Yes

+tampi

No
MPI?

Yes

+mpi

MPI_Isend()?

Yes

+isend

No
MPI_Send()?

Yes

+send

No
MPI_Get()?

Yes

+rma

No

multithread?

Yes

OpenMP?

Yes

+omp

No
OmpSs-2?

Yes

+oss

fork-join?

Yes

+fork

No
task for?

No

Yes

+taskfor

No
task model?

Yes

+task

+seq

No

SIMD opt.?
Yes

+simd

No

End Error

No

No

No

No

