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CHAPTER
ONE

INTRODUCTION

OmpSs-2 is a programming model composed of a set of directives and library routines that can be used in conjunction
with a high level programming language in order to develop concurrent applications. This programming model is an
effort to integrate features from the StarSs programming model family, developed by the Programming Models group
of the Computer Sciences department at Barcelona Supercomputing Center (BSC), into a single programming model.

OmpSs-2 extends the tasking model of OmpSs/OpenMP to support both task nesting and fine-grained dependences
across different nesting levels, which enables the effective parallelization of applications using a top-down methodology.

Tasks are the elementary unit of work which represents a specific instance of an executable code. Dependences let the
user annotate the data flow of the program, this way at run-time this information can be used to determine if the parallel
execution of two tasks may cause data races.

The goal of OmpSs-2 is to provide a productive environment to develop applications for modern High-Performance
Computing (HPC) systems. Two concepts add to make OmpSs-2 a productive programming model: performance and
ease of use. Programs developed in OmpSs-2 must be able to deliver a reasonable performance when compared to other
programming models targeting the same architecture(s). Ease of use is a concept difficult to quantify but OmpSs-2 has
been designed using principles that have been praised by their effectiveness in that area.

In particular, one of our most ambitious objectives is to extend the OpenMP programming model with new directives,
clauses and/or API services or general features to better support asynchronous data-flow parallelism and heterogeneity.
These are, currently, the most prominent features introduced in the OmpSs-2 programming model:

 Lifetime of task data environment: A task is completed once the last statement of its body is executed. It
becomes deeply completed when also all its children become deeply completed. The data environment of a task,
which includes all the variables captured when the task is created, is preserved until the task is deeply completed.
Notice that the stack of the thread that is executing the task is NOT part of the task data environment.

* Nested dependency domain connection: Incoming dependences of a task propagate to its childrean as if the
task did not exist. When a task finishes, its outgoing dependences are replaced by those generated by its children

» Early release of dependences: By default, once a task is completed it will release all the dependences that
are not included on any unfinished descendant task. If the wait clause is specified in the task construct, all its
dependences will be released at once when the task becomes deeply completed.

* Weak dependences: The weakin/weakout clauses specify potential dependences only required by descendants
tasks. These annotations do not delay the execution of the task.

* Native offload API: A new asynchronous API to execute OmpSs-2 kernels on a specified set of CPUs from any
kind of application, including Java, Python, R, etc.

» Task Pause/Resume API: A new API that can be used to programmatically suspend and resume the execution
of a task. It is currently used to improve the interoperability and performance of hybrid MPI and OmpSs-2
applications.
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1.1 Reference implementation

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source compiler and the Nanos6
Runtime Library:

* The Mercurium source-to-source compiler provides the necessary support for transforming the high-level direc-
tives into a parallelized version of the application.

* The Nanos6 run-time system library provides the services to manage all the parallelism in the user-application,
including task creation, synchronization and data movement, and provide support for resource heterogeneity.

1.2 A bit of history

OmpSs-2 is the second generation of the OmpSs programming model. The name originally comes from two other
programming models: OpenMP and StarSs. The design principles of these two programming models constitutes the
fundamental ideas used to conceive the OmpSs philosophy.

OmpSs takes from OpenMP its viewpoint of providing a way to, starting from a sequential program, produce a parallel
version of the same by introducing annotations in the source code. This annotations do not have an explicit effect in the
semantics of the program, instead, they allow the compiler to produce a parallel version of it. This characteristic feature
allows the users to parallelize applications incrementally. Starting from the sequential version, new directives can be
added to specify the parallelism of different parts of the application. This has an important impact on the productivity
that can be achieved by this philosophy. Generally when using more explicit programming models the applications
need to be redesigned in order to implement a parallel version of the application, the user is responsible of how the
parallelism is implemented. A direct consequence of this is the fact that the maintenance effort of the source code
increases when using a explicit programming model, tasks like debugging or testing become more complex.

StarSs, or Star SuperScalar, is a family of programming models that also offer implicit parallelism through a set of
compiler annotations. It differs from OpenMP in some important areas. StarSs uses a different execution model,
thread-pool where OpenMP implements fork-join parallelism. StarSs also includes features to target heterogeneous
architectures through leveraging native kernels implementation while OpenMP targets accelerator support through
direct compiler code generation. Finally StarSs offers asynchronous parallelism as the main mechanism of expressing
parallelism whereas OpenMP only started to implement it since its version 3.0. Also StarSs offers task synchronization
by means of dependences as the main mechanism of expressing the task execution order, enabling the look-ahead
instantiation of task whereas OpenMP included it since its version 4.0.

StarSs raises the bar on how much implicitness is offered by the programming model. When programming using
OpenMP, the developer first has to define which regions of the program will be executed on parallel, then he or she
has to express how the inner code has to be executed by the threads forming the parallel region, and finally it may
be required to add directives to synchronize the different parts of the parallel execution. StarSs simplifies part of this
process by providing an environment where parallelism is implicitly created from the beginning of the execution, thus
the developer can omit the declaration of parallel regions. The definition of parallel code is used using the concept of
tasks, which are pieces of code which can be executed asynchronously in parallel. When it comes to synchronizing the
different parallel regions of a StarSs applications, the programming model also offers a dependency mechanism which
allows to express the correct order in which individual tasks must be executed to guarantee a proper execution. This
mechanism enables a much richer expression of parallelism by StarSs than the one achieved by OpenMP, this makes
StarSs applications to exploit the parallel resources more efficiently.

OmpSs tries to be the evolution that OpenMP needs in order to be able to target newer architectures. For this, OmpSs
takes key features from OpenMP but also new ideas that have been developed in the StarSs family of programming
models.

4 Chapter 1. Introduction



Specification of OmpSs-2, Release OmpSs-2 2024.05

1.3 Influence in OpenMP

Many OmpSs and StarSs ideas have been introduced into the OpenMP programming model. The next figure summa-
rizes our contributions in the standard:
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Starting from the version 3.0, released on May 2008, OpenMP included the support for asynchronous tasks. The
reference implementation, which was used to measure the benefits that tasks provided to the programming model, was
developed at BSC and consisted on the Nanos4 run-time library and the Mercurium source-to-source compiler.

Our next contribution, which was included in OpenMP 4.0 (released on July 2013), was the extension of the tasking
model to support data dependences, one of the strongest points of OmpSs that allows to define fine-grain synchroniza-
tion among tasks. This feature was tested using Mercurium source-to-source compiler and the Nanos++ RTL.

In OpenMP 4.5 (released on November 2015, and current version), the tasking model was extended with the taskloop
construct using Nanos++ as the reference implementation to validate these ideas. BSC also contributed to version 4.5
adding the priority clause to task and taskloop constructs.

Upcopming versions of OpenMP will include: task reductions, as a way to use tasks as the participants of a
reduction operation; iterators and multidependences, mechanism to specify a variable number of dependences
for atask instance; taskwait dependences, torelax the set of descendants we need to wait for before proceeding with
the taskwait construct; and the mutexinoutset (a.k.a. commutative), a new type of dependence to support mutually
exclusive tasks. The Nanos++ RTL was also used to validate the new interface included in the OpenMP standard with
respect third party tools.

1.4 Glossary of terms

ancestor tasks
The set of tasks formed by your parent task and all of its ancestor tasks.

base language
The base language is the programming language in which the program is written.

child task
A task is a child of the task which encounters its rask generating code.

construct
A construct is an executable directive and its associated statement. Unlike the OpenMP terminology, we will
explicitly refer to the lexical scope of a constructor or the dynamic extent of a construct when needed.

data environment
The data environment is formed by the set of variables associated with a given task.

declarative directive
A directive that annotates a declarative statement.

1.3. Influence in OpenMP 5
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dependence
Is the relationship existing between a predecessor task and one of its successor tasks.

descendant tasks
The descendant tasks of a given task is the set of all its child tasks and the descendant tasks of them.

directive
In C/C++ a #pragma preprocessor entity.

In Fortran a comment which follows a given syntax.

dynamic extent
The dynamic extent is the interval between establishment of the execution entity and its explicit disestablishment.
Dynamic extent always obey to a stack-like discipline while running the code and it includes any code in called
routines as well as any implicit code introduced by the OmpSs-2 implementation.

executable directive
A directive that annotates an executable statement.

expression
Is a combination of one or more data components and operators that the base program language may understand.

function task
In C, an task declared by a task directive at file-scope that comes before a declaration that declares a single
function or comes before a function-definition. In both cases the declarator should include a parameter type list.

In C++, a task declared by a task directive at namespace-scope or class-scope that comes before a function-
definition or comes before a declaration or member-declaration that declares a single function.

In Fortran, a task declared by a task directive that comes before a the SUBROUTINE statement of an external-
subprogram, internal-subprogram or an interface-body.

inline task
In C/C++ an explicit task created by a task directive in a statement inside a function-definition.

In Fortran, an explicit task created by a task directive in the executable part of a program unit.

lexical scope
The lexical scope is the portion of code which is lexically (i.e. textually) contained within the establishing
construct including any implicit code lexically introduced by the OmpSs-2 implementation. The lexical scope
does not include any code in called routines.

outline tasks
An outlined task is also know as a function tasks.

predecessor task
A task becomes predecessor of another task(s) when there are dependence(s) between this task and the other
ones (i.e. its successor tasks. That is, there is a restriction in the order the run-time system must execute them:
all predecessor tasks must complete before a successor task can be executed.

parent task
The task that encountered a task generating code is the parent task of the new created task(s).

ready task pool
Is the set of tasks ready to be executed (i.e. they are not blocked by any condition).

structured block
An executable statement with a single entry point (at the top) and a single exit point (at the bottom).

successor task
A task becomes successor of another task(s) when there are dependence(s) between these tasks (i.e. its prede-
cessors tasks) and itself. That is, there is a restriction in the order the run-time system must execute them: all the
predecessor task must complete before a successor task can be executed.

6 Chapter 1. Introduction
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task
A task is the minimum execution entity that can be managed independently by the run-time scheduler (although
a single task may be executed at different phases according with its rask scheduling points). Tasks in OmpSs-2
can be created by any task generating code.

task dependency graph
The set of tasks and its relationships (successor / predecessor) with respect the correspondant scheduling restric-
tions.

task generating code
The code which execution create a new task. In OmpSs-2 it can occurs when encountering a task construct, a
loop construct or when calling a routine annotated with a task declarative directive.

task scheduling point
The different points in wich the run-time system may suspend the execution of the current task and execute a
different one.

1.4. Glossary of terms 7
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CHAPTER
TWO

PROGRAMMING MODEL

2.1 Execution model

The most notable difference from OmpSs-2 to OpenMP is the absence of the parallel clause in order to specify
where a parallel region starts and ends. This clause is required in OpenMP because it uses a fork-join execution model
where the user must specify when parallelism starts and ends. OmpSs-2 uses the model implemented by StarSs where
parallelism is implicitly created when the application starts. Parallel resources can be seen as a pool of threads—hence
the name, thread-pool execution model-that the underlying run-time will use during the execution.

Warning: The user has no control over this pool of threads, so the standard OpenMP methods
omp_get_num_threads () or its variants are not available to use.

At the beginning of the execution, the OmpSs-2 run-time system creates an initial pool of worker threads (i.e., there is
no master thread in OmpSs-2). The main function is wrapped in an implicit task, which is called the main task, and
it is added into the queue of ready tasks. Then, one of the worker threads gets that task from the queue, and it starts
executing it. Meanwhile, the rest of threads wait for more ready tasks, which could be instantiated by the main task or
other running tasks.

Multiple threads execute tasks that are defined implicitly or explicitly by annotating programs with OmpSs-2 directives.
The OmpSs-2 programming model is intended to support programs that will execute correctly both as parallel and as
sequential programs (if the OmpSs-2 language is ignored).

OmpSs-2 allows the expression of parallelism through tasks. Tasks are independent pieces of code that can be executed
by parallel resources at run-time. Whenever the program flow reaches a section of code that has been declared as a task,
instead of executing the task’s body code, the program will create an instance of the task and will delegate its execution
to the OmpSs-2 run-time system. The OmpSs-2 run-time system will eventually execute the task on a parallel resource.
The execution of this explicitly generated tasks is assigned to one of the worker threads in the pool of threads, subject
to the thread’s availability to execute work. Thus, the execution of the new task could be immediate, or deferred until
later according to task scheduling constraints and thread availability. Threads are allowed to suspend the current task
region at a task scheduling point in order to execute a different task.

Any directive that defines a task or a series of tasks can also appear within a task definition. This allows the definition
of multiple levels of parallelism. Defining multiple levels of parallelism can lead to a better performance of applica-
tions, since the underlying OmpSs-2 run-time system can exploit factors like data or temporal locality between tasks.
Supporting multi-level parallelism is also required to allow the implementation of recursive algorithms.

The synchronization of tasks of an application is required in order to produce a correct execution, since usually some
tasks depend on data computed by other tasks. The OmpSs programming model offers two ways of expressing this:
data dependencies, and explicit directives to set synchronization points.

Regular OmpSs-2 applications are linked as whole OmpSs-2 applications, however, the run-time system also has a
library mode. In library mode, there is no implicit task for the main function. Instead, the user code defines functions




Specification of OmpSs-2, Release OmpSs-2 2024.05

that contain regular OmpSs-2 code (i.e., tasks, ...), and offloads them to the run-time system through an APIL. In this
case, the code is not linked as an OmpSs-2 application, but as a regular application that is linked to the run-time library.

2.2 Data sharing attributes

OmpSs-2 allows to specify the explicit data sharing attributes for the variables referenced in a construct body using
the following clauses:

e private(<list>)
o firstprivate(<list>)
¢ shared(<list>)

The private and firstprivate clauses declare one or more variables to be private to the construct (i.e., a new
variable will be created). All internal references to the original variable are replaced by references to this new variable.
Variables privatized using the private clause are uninitialized when the execution of the construct body begins.
Variables privatized using the firstprivate clause are initialized with the value of the corresponding original variable
when the construct was encountered.

The shared clause declares one or more variables to be shared to the construct (i.e., the construct still will refer the
original variable). Programmers must ensure that shared variables do not reach the end of their lifetime before other
constructs referencing them have finished.

There are a few exceptions in which the data sharing clauses can not be used on certain variables due the nature of the
symbol. In these cases we talk about pre-determined data sharing attributes and they are defined by the following
rules:

* Dynamic storage duration objects are shared (e.g., malloc, new, ...).

* Static data members are shared.

 Variables declared inside the construct body with static storage duration are shared.

* Variables declared inside the construct body with automatic storage duration are private.

When the variable does not have a pre-determined behaviour and it is not referenced by any of the explicit data sharing
rules it is considered to have an implicit data sharing attribute according with the following rules:

* If the variable appears in a depend clause, the variable will be shared.

» If a default clause is present in the construct, the implicit data sharing attribute will be the one defined as a
parameter of this clause.

 If no default clause is present and the variable was private/local in the context encountering the construct, the
variable will be firstprivate.

» Ifno default clause is present and the variable was shared/global in the context encountering the construct, the
variable will be shared.

The default (none) clause disables all implicit data sharing attributes of a construct, which forces the user to specify
the data sharing attribute of each variable that appears inside the construct body.

10 Chapter 2. Programming Model
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2.3 Dependence model

Asynchronous parallelism is enabled in OmpSs-2 by the use data-dependencies between the different tasks of the
program. OmpSs-2 tasks commonly require data in order to do meaningful computation. Usually a task will use some
input data to perform some operations and produce new results that can be later used by other tasks or parts of the
program.

When an OmpSs-2 program is being executed, the underlying run-time system uses the data dependence information
and the creation order of each task to perform dependence analysis. This analysis produces execution-order constraints
between the different tasks which results in a correct order of execution for the application. We call these constraints
task dependences.

Each time a new task is created its dependencies are matched against of those of existing tasks. If a dependency, either
Read-after-Write (RaW), Write-after-Write (WaW) or Write-after-Read(WaR), is found the task becomes a successor of
the corresponding tasks. This process creates a task dependency graph at run-time. Tasks are scheduled for execution
as soon as all their predecessors in the graph have finished (which does not mean they are executed immediately) or at
creation if they have no predecessors.

In the general case, the statement that follows the pragma is to be executed asynchronously. Whenever a thread en-
counters a task construct, it instantiates the task and resumes its execution after the construct. The task instance can
be executed either by that same thread at some other time or by another thread. The semantics can be altered through
additional clauses and through the properties of the enclosing environment in which the task is instantiated.

Dependencies allow tasks to be scheduled after other tasks using the depend clause. They allow to specify for each
task in the program what data a task is waiting for and signaling is readiness. Note that whether the task really uses
that data in the specified way is a responsibility of the programmer.

The depend clause admits the following keywords: in, out, inout, concurrent or commutative. The keyword
is followed by a colon and a comma separated list of elements (memory references). The syntax permitted to specify
memory references is described in Language section. The data references provided by these clauses are commonly
named the data dependencies of the task.

The semantics of the depend clause are also extended with the in (standing for input), out (standing for output), inout
(standing for input/output), concurrent and commutative clauses to this end. All these clauses also admit a comma
separated list of elements (memory references) as described in the previous paragraph.

The meaning of each clause/keyword is explained below:

in(memory-reference-list): If a task has an in clause that evaluates to a given Ivalue, then the task will not
be eligible to run as long as a previously created sibling task with an out, inout, concurrent or commutative
clause applying to the same Ivalue has not finished its execution.

out (memory-reference-list): If a task has an out clause that evaluates to a given lvalue, then the task
will not be eligible to run as long as a previously created sibling task with an in, out, inout, concurrent or
commutative clause applying to the same Ivalue has not finished its execution.

inout (memory-reference-1list): If a task has an inout clause that evaluates to a given lvalue, then it is
considered as if it had appeared in an in clause and in an out clause. Thus, the semantics for the in and out
clauses apply.

concurrent (memory-reference-1list): The concurrent clause is a special version of the inout clause
where the dependencies are computed with respect to in, out, inout and commutative but not with respect to
other concurrent clauses. As it relaxes the synchronization between tasks users must ensure that either tasks can
be executed concurrently either additional synchronization is used.

commutative (memory-reference-1list): If a task has a commutative clause that evaluates to a given lvalue,
then the task will not become a member of the commutative task set for that lvalue as long as a previously
created sibling task with an in, out, inout or concurrent clause applying to the same Ivalue has not finished
its execution. Given a non-empty commutative task set for a certain lvalue, any task of that set may be eligible to

2.3. Dependence model 11
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run, but just one at the same time. Thus, tasks that are members of the same commutative task set are executed
keeping mutual exclusion among them.

The usual scope of the dependency calculation is restricted to that determined by the enclosing (possibly implicit) task.
That is, the contents of the depend clause of two tasks can determine dependencies between them only if they share
the same parent task. In this sense, tasks define an inner dependency domain into which to calculate the dependencies
between its direct children. However, OmpSs-2 improves the combination of data dependencies and task nesting, as
will be explained in the next sections.

The following example shows how to define tasks with task dependences:

void foo (int *a, int *b) {
for (dnt 1 = 1; i < N; i++) {
#pragma oss task in(a[i-1]) inout(a[i]) out(b[i])
propagate(&al[i-1], &a[i], &b[i]);

#pragma oss task in(b[i-1]) inout(b[i])
correct(&b[i-1], &b[i]);
}
}

This code generates at run-time the following task graph:

O propagate

comect

The following example shows how we can use the concurrent clause to parallelize a reduction over an array:

#include <stdio.h>
#define N 100

void reduce(int n, int *a, int *sum) {
for (int i = 0; 1 < n; i++) {
#pragma oss task concurrent(*sum)
{
#pragma oss atomic
*sum += a[i];

(continues on next page)

12 Chapter 2. Programming Model
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(continued from previous page)

}
}
}

int main(Q) {
int i, a[N];
for (4 = 0; 1 < N; ++1)
ali]l =1 + 1;

int sum = 0;
reduce(N, a, &sum);

#pragma oss task in(sum)
printf("The sum of all elements of 'a' is: %d\n", sum);

#pragma oss taskwait
return 0;

Note that all tasks that compute the sum of the values of a may be executed concurrently. For this reason we have to
protect with an atomic construct the access to the sum variable. As soon as all of these tasks finish their execution,
the task that prints the value of sum may be executed.

The following example shows how we can use the commutative clause:

#include <stdio.h>

int main(Q) {
int a;

#pragma oss task out(a) // Task T1
a = 10;

#pragma oss task commutative(a) // Task T2
printf("Intermediate alue of 'a': %d\n", a++);

#pragma oss task commutative(a) // Task T3
printf("Intermediate value of 'a': %d\n", a++);

#pragma oss task in(a) // Task T4
printf("Final value of 'a' is: %d\n", a);

#pragma oss taskwait
return 0;

Note that the commutative tasks (T2 and T3) will be executed after the task that inititalizes a (T1), and before the task
that prints the final value of a (T4). No execution order of the commutative tasks is not guaranteed but they will not be
executed at the same time by definition. Thus, it is safe to modify the value of a inside those tasks.

2.3. Dependence model 13
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2.3.1 Combining task nesting and dependencies

Being able to combine task nesting and dependences is important for programmability. The code below shows an
example that combines nesting and dependencies with two levels of tasks. For brevity, the inner tasks do not have
dependencies between their siblings.

#pragma oss task inout(a, b) // Task TI

{
a++; b++;
#pragma oss task inout(a) // Task T1.1
a+= ...;
#pragma oss task inout(b) // Task T1.2
b += ...;
}
#pragma oss task in(a, b) out(z, c, d) // Task T2
{
Z = ...
#pragma oss task in(a) out(c) // Task T2.1
C= ... +a+ ...;
#pragma oss task in(b) out(d) // Task T2.2
d= ... +b+ ...;
}
#pragma oss task in(a, b, d) out(e, f) // Task T3
{
#pragma oss task in(a, d) out(e) // Task T3.1
e= ... +a+d+ ...;
#pragma oss task in(b) out(f) // Task T3.2
f=...+b+ ...;
}
#pragma oss task in(c, d, e, f) // Task T4
{
#pragma oss task in(c, e) // Task T4.1
R T i o - T
#pragma oss task in(d, f) // Task T4.2
ee = e +d+ £+ L
}

#pragma oss taskwait

To parallelize the original code using a top-down approach we would perform the following steps. First, we would add
the pragmas of the outer tasks. Since they have conflicting accesses over some variables, we add the corresponding
dependency clauses (e.g., in and out) for each of their accessed variables. In general, it is a good practice to have entries
to protect all the accesses of a task. Doing this reduces the burden on the programmer, improves the maintainability of
the code and reduces the chances to overlook conflicting accesses.

Then, inside each task, we identify separate functionalities and convert each into a task. If we follow the same approach,
the depend clause of each inner task will contain entries to protect its own accesses.

When we consider how the depend clauses are composed, we observe that outer tasks contain a combination of elements
to protect their own accesses and elements that are only needed by their subtasks. This is necessary to avoid data-races
between subtasks with different parents. Note that parent tasks do not execute a taskwait at the end of their task body.
Unlike OpenMP and OmpSs, OmpSs-2 automatically links the dependency domain of a task with that of its subtasks.
Once a task finishes its execution, the dependencies that are not included in any of its unfinished subtasks are released.
In contrast, the release of the dependencies that appear in any of its unfinished subtasks is delayed until these latter
finish.

We strongly recommend avoiding the taskwaits at the end of task bodies. They delay the finalization of tasks, and also,
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they hinder the discovery of parallelism. Moreover, taskwait delays the release of all dependencies until all subtasks
finish, even the dependencies not declared by any subtask. Nevertheless, it is worth noting that the variables stored in
the stack of the parent task are no longer valid once it returns from its task body. In the next section, we explain in
detail the benefits of automatically linking dependency domains across task nesting levels without taskwaits.

2.3.2 Fine-grained release of dependencies across nesting levels

Detaching the taskwait at the end of a task from the task code allows the run-time system to be made aware earlier
of the fact that the task code has finished and that it will not create further subtasks. In an scenario with task nesting
and dependencies, this knowledge allows it to make assumptions about dependencies. Since the task code is finished,
the task will no longer perform by itself any action that may require the enforcement of its dependencies. Only the
dependencies needed by its live subtasks need to be preserved. In most cases, these dependencies are the ones associated
to an element of the depend clause that also appears in a live subtask. Therefore, the dependencies that do not need to
be enforced anymore could be released.

This incremental fine-grained release of dependencies is the default behaviour in OmpSs-2 tasks. However, this be-
haviour can be disabled with the wait clause, which defers the release of all dependencies of a task until it has finished
the execution of its body and all its subtasks deeply complete. This clause emulates a taskwait-like operation immedi-
ately after exiting from the task code, but avoiding the overhead and drawbacks of a taskwait.

Notice that this improvement is only possible once the run-time system is aware of the end of the code of a task.
However, it may also be desirable to trigger this mechanism earlier. For instance, a task may use certain data only at
the beginning and then perform other lengthy operations that delay the release of the dependencies associated to that
data. The release directive asserts that a task will no longer perform accesses that conflict with the contents of the
associated depend clause. The contents of the depend clause must be a subset of that of the task construct that is no
longer referenced in the rest of the lifetime of the task and its future subtasks.

2.3.3 Weak dependences

Some of the elements of the depend clause may be needed by the task itself, others may be needed only by its subtasks,
and others may be needed by both. The ones that are only needed for the subtasks only serve as a mechanism to link
the outer domain of dependencies to the inner one. In this sense, allowing them to defer the execution of the task is
unnecessary, since the task does not actually perform any conflicting accesses by itself.

The dependence model in OmpSs-2 has been extended to define the weak counterparts of in, out, inout and
commutative dependences. Their semantics are analogous to the ones without the weak prefix. However, the weak
variants indicate that the task does not perform by itself any action that requires the enforcement of the dependency.
Instead those actions can be performed by any of its deeply nested subtasks. Any subtask that may directly perform
those actions needs to include the element in its depend clause in the non-weak variant. In turn, if the subtask delegates
the action to a subtask, the element must appear in its depend clause using at least the weak variant.

Weak variants do not imply a direct dependency, and thus do not defer the execution of tasks. Their purpose is to serve
as linking point between the dependency domains of each nesting level. Until now, out of all the tasks with the same
parent, the first one with a given element in its depends clause was assumed to not have any input dependency. However,
this assumption is no longer true since the dependency domains are no longer isolated. Instead, if the parent has that
same element with a weak dependency type, there may actually be a previous and unfinished task with a depend clause
that has a dependency to it. If we calculated dependencies as if all types were non-weak, in such a case, the source of
the dependency, if any, would be the source of the non-enforced dependency on its parent over the same element.

This change, combined with the fine-grained release of dependencies, merges the inner dependency domain of a task
into that of its parent. Since this happens at every nesting level, the result is equivalent to an execution in which all
tasks had been created in a single dependency domain.
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2.3.4 Extended data dependencies expressions

All dependence clauses allow extended Ivalues from those of C/C++. Two different extensions are allowed:

¢ Array sections allow to refer to multiple elements of an array (or pointed data) in a single expression. There are
two forms of array sections:

— a[lower : upper]. In this case all elements of ‘a’ in the range of lower to upper (both included) are
referenced. If no lower is specified it is assumed to be 0. If the array section is applied to an array and
upper is omitted then it is assumed to be the last element of that dimension of the array.

— a[lower; size]. In this case all elements of ‘a’ in the range of lower to lower+(size-1) (both included)
are referenced.

» Shaping expressions allow to recast pointers into array types to recover the size of dimensions that could have
been lost across function calls. A shaping expression is one or more [size] expressions before a pointer.

Implementations may choose not to support the extended data dependencies model, in which case array sections and
shaping expressions will register a single dependency to the first element of the specified range. For example, an
expression of the form a[lower : upper] will be interpreted as a dependency over a[lower].

The following example shows examples of these extended expressions:

void sort(int n, int *a) {
if (n < small) seq_sort(n, a);

#pragma oss task inout(a[0:(n/2)-1]) // equivalent to inout(a[0;n/2])
sort(n/2, a);

#pragma oss task inout(a[n/2:n-1]) // equivalent to inout(a[n/2;n-(n/2)])
sort(n/2, &a[n/21);

#pragma oss task inout(a[0:(n/2)-1], a[n/2:n-1])
merge (n/2, a, a, &a[n/2]);

#pragma oss taskwait

}

Note that these extensions are only for C/C++, since Fortran supports, natively, array sections. Fortran array sections
are supported on any dependence clause as well.

2.3.5 Dependences on the taskwait construct

In addition to the dependencies mechanism, there is a way to set synchronization points in an OmpSs-2 application.
These points are defined using the taskwait directive. When the control flow reaches a synchronization point, it waits
until all previously created sibling tasks deeply complete.

OmpSs-2 also offers synchronization points that can wait until certain tasks are completed. These synchronization
points are defined adding any kind of task dependence clause to the taskwait construct.

16 Chapter 2. Programming Model




Specification of OmpSs-2, Release OmpSs-2 2024.05

2.3.6 Multidependences

Multidependences is a powerful feature that allow us to define a dynamic number of any kind of dependences. From
a theoretical point of view, a multidependence consists on two different parts: first, an Ivalue expression that contains
some references to an identifier (the iterator) that doesn’t exist in the program and second, the definition of that identifier
and its range of values. Depending on the base language the syntax is a bit different:

¢ dependence-type({memory-reference-list, iterator-name = lower; size}) for C/C++.
¢ dependence-type([memory-reference-list, iterator-name = lower, size]) for Fortran.
Additionally, a multidependence may specify the step of the range in the following way:

¢ dependence-type({memory-reference-list, iterator-name = lower; size : step}) for
C/C++.

¢ dependence-type([memory-reference-list, iterator-name = lower, size, step]) for Fortran.

Despite having different syntax for C/C++ and Fortran, the semantics of this feature is the same for the 3 languages:
the Ivalue expression will be duplicated as many times as values the iterator have and all the references to the iterator
will be replaced by its values.

The following code shows how to define a multidependence in C/C++:

void foo(int n, int *v)

{
// This dependence is equivalent to inout(v[0], v[1], ..., v[n-1])
#pragma oss task inout({v[i], i=0;n})
{
for (int j = 0; j < n; ++j)
v[jl++;
}
}

And a similar code in Fortran:

subroutine foo(n, v)
implicit none
integer :: n

integer :: v(n)

! This dependence is equivalent to inout(v[1], v[2], ..., v[n])
!$oss task inout([v(i), i=1, n])

v=v+1

!$oss end task
end subroutine foo
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2.4 Task scheduling

When the current executed task reaches a rask scheduling point, the implementation may decide to switch from this
task to another one from the set of eligible tasks. Task scheduling points may occur at the following locations:

* In a task generating code.

* In a taskwait directive.

* Just after the completion of a task.

e When entering or exiting a critical section.

* When explicitly blocking or unblocking a task through the blocking API.

The fact of switching from a task to a different one is known as rask switching and it may imply to begin the execution
of a non-previously executed task or to resume the execution of a partially executed task. Task switching is restricted
in the following situations:

 The set of eligible tasks (at a given time) is initially formed by the set of tasks included in the ready task pool (at
this time).

* Once a task has been executed by a given thread, it can be only resumed by the very same thread (i.e., the set of
eligible tasks for a thread does not include tasks that have been previously executed by a different thread).

* When creating a task with the if clause for which expression evaluated to false, the run-time system must offer
a mechanism to immediately execute this task (usually by the same thread that creates it).

* When executing in a final context all the encountered task generating codes will execute the task immediately
after creating it as if it was a simple routine call (i.e., the set of eligible tasks in this situation is restricted to
include only the newly generated task).

Note: Remember that the ready task pool does not include tasks with dependences still not fulfilled (i.e., not all
predecessors of a task have finished yet) or blocked tasks in any other condition (e.g., tasks executing a taskwait with
non-finished child tasks).

2.5 Conditional compilation

In implementations that support a preprocessor, the _OMPSS_2 macro name is defined to have a value. In order to keep
non OmpSs-2 programs still compiling programmers should use the symbol definition to guard all OmpSs-2 routine
calls or any specific mechanism used by the OmpSs-2 programming model.

2.6 Runtime options

OmpSs-2 uses the run-time library routines to check and configure different Control Variables (CVs) during the program
execution. These variables define certain aspects of the program and run-time behaviour. A set of shell environment
variables may also be used to configure the CVs before executing the program.

A list of library routines can be found in chapter Library Routines from this specification. However, some library
routines and environment variables are implementation defined and programmers will find them documented in the
OmpSs-2 User Guide.
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CHAPTER
THREE

LANGUAGE DIRECTIVES

This chapter describes the OmpSs-2 language, this is, all the necessary elements to understand how an OmpSs-2 appli-
cation executes and/or behaves in a parallel architecture. OmpSs-2 provides a simple path for users already familiarized
with the OpenMP programming model to easily write (or port) their programs to OmpSs-2.

This description is completely guided by the list of OmpSs-2 directives. In each of the following sections we will find
a short description of the directive, its specific syntax, the list of clauses (including the list of valid parameters for each
clause and a short description for them). In addition, each section finalizes with a simple example showing how this
directive can be used in a valid OmpSs-2 program.

As is the case of OpenMP in C and C++, OmpSs-2 directives are specified using the #pragma mechanism (provided
by the base language) and in Fortran they are specified using special comments that are identified by a unique sentinel.
The sentinel used in OmpSs-2 is oss. Compilers will typically ignore OmpSs-2 directives if support is disabled or not
provided.

C/C++ format:

#pragma oss directive-name [clause[ [,] clause] ... ] new-line

Fortran format:

sentinel directive-name [clause[ [,] clause]...]

Where depend on Fortran fixed/free form:

* The sentinels for fixed form can be: !$o0ss, c$oss or *$oss. Sentinels must start in column 1. Continued
directive line must have a character other than a space or a zero in column 6.

* The sentinel for free form must be ! $oss. This sentinel can appear in any column as long as is not preceeded by
any character different than space. Continued directive line must have an ampersand (&).

3.1 Task construct

The programmer can specify a task using the task construct. This construct can appear inside any code block of the
program, which will mark the following statement as a task.

The syntax of the task construct is the following:

#pragma oss task [clauses]
structured-block

The valid clauses for the task construct are:

e private(<list>)
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e firstprivate(<list>)

e shared(<list>)

e depend(<type>: <memory-reference-list>)
¢ <depend-type>(<memory-reference-list>)

e reduction(<operator>:<memory-reference-list>)
e priority(<expression>)

e cost(<expression>)

e if(<scalar-expression>)

e final(<scalar-expression>)

* wait

* onready(<statement>)

e label(<string>)

e create(<scalar-expression>)

The private, firstprivate and shared clauses allow to specify the data sharing attribute of the variables referenced
in the construct. A description of these clauses can be found in Data sharing attributes section.

The depend clause allows to infer additional task scheduling restrictions from the parameters it defines. These restric-
tions are known as dependences. The syntax of the depend clause include a dependence type, followed by colon and
its associated list items. The list of valid type of dependences are defined in section Dependence model in the previous
chapter. In addition to this syntax, OmpSs-2 allows to specify this information using the type of dependence as the
name of the clause. Then, the following code:

#pragma oss task depend(in: a,b,c) depend(out: d)

Is equivalent to this one:

#pragma oss task in(a,b,c) out(d)

The reduction clause allows to define the task as a participant of a reduction operation. The first occurrence of
a participating task defines the begin of the scope for the reduction. The end of the scope is implicitly ended by a
taskwait or a dependence over the memory-reference-item. More information about task reductions on OmpSs-2
at the following Master Thesis: https://upcommons.upc.edu/handle/2117/129246.

The priority clause indicates a priority hint for the task. Greater numbers indicate higher priority, and lower numbers
indicate less priority. By default, tasks have priority 0. The expression of the priority is evaluated as a singed integer.
This way, strictly positive priorities indicate higher priority than the default, and negative priorities indicate lower than
default priority.

If the expression of the if clause evaluates to frue, the execution of the new created task can be deferred, otherwise
the current task must suspend its execution until the new created task has complete its execution.

If the expression of the £inal clause evaluates to true, the new created task will be a final task and all the task generating
code encountered when executing its dynamic extent will also generate final tasks. In addition, when executing within
a final task, all the encountered task generating codes will execute these tasks immediately after its creation as if they
were simple routine calls. And finally, tasks created within a final task can use the data environment of its parent task.

Tasks with the wait clause will perform a taskwait-like operation immediately after exiting from the task code. Since
it is performed outside the scope of the code of the task, this happens once the task has abandoned the stack. For this
reason, its use is restricted to tasks that upon exiting do not have any subtask accessing its local variables. Otherwise,
the regular taskwait shall be used instead.

20 Chapter 3. Language Directives



https://upcommons.upc.edu/handle/2117/129246

Specification of OmpSs-2, Release OmpSs-2 2024.05

The onready clause allow defining an action in the form of a statement (e.g., a call to a function) that will be executed
once the task becomes ready. This is explained in more detail in section Task Onready clause.

The label clause defines a string literal that can be used by any performance or debugger tool to identify the task with
a more human-readable format. The string literal must be wrapped in double quotes. For instance, a task that initializes
an array could be labeled as 1label("init array™).

The following C code shows an example of creating tasks using the task construct:

float x = 0.0;
float y = 0.0;
float z = 0.0;

int main(Q) {
#pragma oss task
do_computation(x);

#pragma oss task

{
do_computation(y);
do_computation(z);

3

#pragma oss taskwait

return 0;

When the control flow reaches #pragma oss task construct, a new task instance is created. The execution order of
the tasks is not guaranteed. Moreover, when the program reaches the #pragma oss taskwait the previously created
tasks may not have been executed yet by the OmpSs-2 run-time system. After potentially being blocked in the taskwait
construct for a while, it is guaranteed that both tasks have already deeply completed.

The task construct is extended to allow the annotation of function declarations or definitions in addition to structured-
blocks. When a function is annotated with the task construct each invocation of that function becomes a task creation
point. The following C code is an example of how task functions are used:

extern void do_computation(float a);

#pragma oss task
extern void do_computation_task(float a);

float x = 0.0;

int main() {
do_computation_task(x); //this will create a task
do_computation(x); //regular function call

#pragma oss taskwait

}

The invocation of do_computation_task inside main function creates an instance of a task. Note that OmpSs-
2 does not gaurantee that the task has been already executed after returning from the regular function call
do_computation(x).

Note that only the execution of the function itself is part of the task not the evaluation of the task arguments. Another
restriction is that the task is not allowed to have any return value, that is, the return must be void.
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Warning: The for clause from the task directive is no longer part of OmpSs-2.

3.1.1 Task Onready clause

The onready clause allows defining an action in the form of a statement (e.g., a call to a function) that will be executed
once the task becomes ready. The run-time system will execute the statement only once, at any moment after the
task satisfies all its data dependencies and before the task runs its body. The onready action cannot assume that is
running within a task context; it should not reach any task scheduling point. Moreover, the action is recommended to
be lightweight and should not perform blocking operations.

The onready action can register external events to the ready task to delay its execution until all the events are fulfilled.
As an example, the callback could execute an asynchronous TAMPI operation, such as TAMPI_Iwait. Such a call
would delay the task’s execution until the corresponding MPI communications are completed. In that way, the data
dependencies allow tasks to define local dependencies with other tasks on the same process, whereas the onready
clause allows defining remote dependencies with other processes. See Tuask external events for more information about
the management of task external events.

The data sharing and dependency rules for the variables used in the onready action are the same that apply to the task
body.

We show an example below where a task safely increases by two the value of a variable from the onready action and
the task body:

void function(int *a)

{
// This is the first increase because it's the onready action
*a += 1;

}

int mainQ)

{

int a = 0;

#pragma oss task inout(a) onready(function(&a))

{
// At this point, the onready action was already executed
++a;

}

#pragma oss taskwait

fprintf(stdout, "a: %d\n", a); // Should print "a: 2"

Below there is an example where we asynchronously receive (through TAMPI services) and process remote data using
a single task with an onready action:

void function(int *a, int rank)
{
MPI_Request request;
MPI_Irecv(a, 1, MPI_INT, src, 0, MPI_COMM_WORLD, &request);

// Asynchronously delay the execution of the task until the communication

(continues on next page)
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(continued from previous page)

// has completed. This service will register an external event if the
// receive has not completed immediately
TAMPI_Iwait(&request, MPI_STATUS_IGNORE);

}

int mainQ)

{
// Initialize MPI...

int a = 0;
int rank = ...;

#pragma oss task inout(a) onready(function(&a, rank))
{
fprintf(stdout, "received data: %d\n", a);
process(a);

3

#pragma oss taskwait

// Finalize MPI...

Please note this is just an example of how onready can be used to delay the execution of a task by registering external
events. Performing heavy operations like MPI_Irecv in an onready action is not recommended because the onready
action does not run in the context of a task.

3.1.2 Task Create clause (experimental)

Important: The create clause is experimental and may change or be removed in the future without any notice.

The optional create clause can inhibit the creation of a task and just execute the body directly. It is typically used to
override the behavior of the final clause for an specific task.

The clause expects a conditional argument create(cond) which is evaluated when the task is to be created. If the
condition evaluates to true the task is created, even if the task is final. Otherwise, if evaluates to false, the task is never
created.

The following create clause:

#pragma oss task create(cond)
do_work(size)

Is equivalent to this code:

if (cond) {
#pragma oss task create(true)
do_work(size)

} else {
do_work(size)

}
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An example of the create clause to override the final effect for some specific tasks is depicted in the following diagram:

e final(size < 20)
OBERC

create(true)

O
The tasks in grey won’t be created due to the final clause, but the ones in green with the create(true) clause, will

always be created.

A task without the create clause will follow the normal creation process, following the rules imposed by the final clause
if used.

The condition used in the create clause must not have side-effects, otherwise the behavior is undefined. For example,
create(size++ > 20) may or may not increase the value of the variable size.

It is important to note that when the task is not created and the body runs as-is, the dependencies or data sharing clauses
of that task won’t have any effect (as there won’t be any task). It is the programmer responsibility to ensure that the
program it is still correct.

3.2 Taskwait construct

Apart from implicit synchronization (task data dependences), OmpSs-2 also offers a mechanism that allow users to
synchronize task execution. The taskwait construct is an stand-alone directive (with no code block associated) and
specifies a wait on the deep completion of all descendant tasks, including the non-direct children tasks.

The syntax of the taskwait construct is the following:

#pragma oss taskwait [clauses]

The valid clauses for the taskwait construct are the following:

e on(list-of-variables): It specifies to wait only for the subset (not all of them) of descendant tasks that
declared a dependency on any of the variables that appear on the list of variables.

The on clause allows to wait only on the tasks that produces some data in the same way as the inout clause. It suspends
the current task until all previous tasks with any dependency on the expression are completed. The following example
illustrates its use:

int computel(void);
int compute2(void);

(continues on next page)
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(continued from previous page)

int mainQ)

{
int resultl, result2;
#pragma oss task out(resultl)
resultl = computel();
#pragma oss task out(result2)
result2 = compute2();
#pragma oss taskwait on(resultl)
printf("resultl = %d\n", resultl);
#pragma oss taskwait on(result2)
printf("result2 = %d\n", result2);
return 0;

}

3.3 Release directive

The release directive asserts that a task will no longer perform accesses that conflict with the contents of the associated
depend clause. The contents of the depend clause must be a subset of that of the task construct that is no longer
referenced in the rest of the lifetime of the current task and its future subtasks. The release directive has not associated
structured block.

The syntax of the release directive is the following:

#pragma oss release [clauses]

The valid clauses for the release directive are:
* depend(<type>: <memory-reference-list>)
¢ <depend-type>(<memory-reference-list>)

The following C code shows an example of partial release of the task dependences using the release directive:

#define SIZE 4096

float x[SIZE];
float y[SIZE];

int main(Q) {

#pragma oss task depend(out:x,y)

{
for (int i=0; i<SIZE; i++) x[i] = 0.0;
#pragma oss release depend(out:x)
for (int i=0; i<SIZE; i++) y[i] = 0.0;
}
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type that was specified at the task depend clause.

Warning: At this moment, the run-time system only supports releasing a dependency of the same dependency

3.4 Atomic construct

Warning: The following information applies to clang. Mercurium does support atomic, but without clauses.

The atomic construct ensures that a specific storage location is accessed atomically, rather than exposing it to the

possibility of multiple, simultaneous reading and writing threads that may result in indeterminate values:

#pragma oss atomic
statement

The construct allows the clauses read, write, and update to define the semantics for which a directive enforces

atomicity. If no clause is present, the behavior is as if the update clause is specified.

 read results in an atomic read of the location designated by x. The statement has the following form:

Vv = X;

write results in an atomic write of the location designated by x. The statement has the following form:

V = expr;

* update results in an atomic update of the location designated by x using the designated operator or intrinsic.
Only the read and write of the location designed by x are performed mutually atomically. The statement has the

following form:

+4X;
X

x binop= expr;

X = X binop expr;
X = expr binop x;

* capture is an atomic capture update. That is, an atomic update to the location designed by x using the designated
operator or intrinsic while also capturing the original or final value of the location designed by x with respect to
the atomic update. The original or final value of the location designated by x is written in the location designated
by v. Only the read and write of the location designed by x are performed mutually atomically. The statement

has the following form:

V = expr-stmt
{ v = x; expr-stmt }
{ expr-stmt v = x; }

where expr-stmt is either an atomic write or update statement.

The atomic construct also allows memory order clauses: relaxed, acquire, release, acq_rel, seq_cst. If no

memory order clause is specified the default memory ordering is relaxed.
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3.5 Critical construct

The critical construct allows programmers to specify regions of code that will be executed in mutual exclusion. The
associated region will be executed by a single thread at a time, other threads will wait at the beginning of the critical
section until no thread is executing it.

The syntax of the critical construct is the following:

#pragma oss critical
structured-block

The syntax also allows named criticals with the following syntax:

#pragma oss critical (<name>)
structured-block

Named criticals prevent concurrency between threads with respect to all critical regions with the same name. Un-
nammed criticals prevent concurrency between threads with respect to all unnamed critical regions.

The critical construct has no related clauses. The beginning and ending of a critical section may be task scheduling
points.

3.6 Assert directive

The assert is a declarative directive that checks whether any runtime configuration option is enabled or has a specific
value. The directive expects a single string with comma-separated conditions. Each condition is composed of the
option name, a comparison operator (==, !=, >, >=, < and <=), and the value to compare.

All conditions are checked before starting the program, and if any fails, the program aborts showing an error with
the incorrect option. The configuration options are runtime-specific, so each runtime system may define its valid
configuration options. Since this directive is declarative, it should be written in any part of the program’s source code
files.

The syntax of the assert directive is:

#pragma oss assert("optionl==40,option2<10,option3!=stringvalue")

int main() {
/)
}

Check the OmpSs-2 User Guide to see the runtime configuration options that can be asserted. For instance, we can
assert that a program is running using the regions dependency system and that the thread stack size is greater than 4MB
with the following code:

#pragma oss assert("version.dependencies==regions,misc.stack_size>4M")

int main() {
/)
}
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3.7 Restrictions

The point of exit of a stuctured block cannot be a branch out of it. The following C code shows an example where any
of the exit calls may lead to undefined behavior:

int main(Q) {

for (dnt i = 0; i < 10; i++) {
if (1 > 5) exit(l);

#pragma oss task
{
// computation
exit(1l);
}
}
#pragma oss taskwait

}
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CHAPTER
FOUR

LIBRARY ROUTINES

This chapter describes the set of OmpSs-2 run-time library routines available while executing an OmpSs-2 program.
Programmers must guarantee the correctness of compiling and linking programs withouth OmpSs-2 support by the use
of the conditional compilation mechanism (see Conditional compilation section).

In the following sections, we provide a short description of all public library routines. These routines are declared in
the public header file named nanos6.h.

Warning: The run-time system library does not provide the Fortran header yet.

4.1 Spawning functions

The nanos6_spawn_function allows to asynchrously spawn a new function that will leverage the run-time system
resources:

void nanos6_spawn_function(
void (*function) (void *),
void *args,
void (*completion_callback) (void *),
void *completion_args,
char const *label
);

Where each of this routine’s parameters are:
» function the function to be spawned.
* args a parameter that is passed to the function.
e completion_callback an optional function that will be called when the function finishes.
* completion_args a parameter that is passed to the completion callback.
* label an optional name for the function.

The routine will create a new OmpSs-2 task executing the function code and receiving the args parameters. This
task has an independent namespace of data dependencies and has no relationship with any other existing task (i.e., no
taskwait will wait for it). Once the task finishes the run-time system will invoke the registered callback service (i.e.,
completion_callback using completion_args parameters). The callback is used as the provided synchronization
mechanism.

The label string will be used for debugging/instrumentation purposes.
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4.2 Task blocking

This API is composed by three functions and provides the functionality of pausing and resuming OmpSs-2 tasks at
run-time. Firstly, the nanos6_get_current_blocking_context returns an opaque pointer that is used for blocking
and unblocking the current task:

void *nanos6_get_current_blocking_context(void);

The underlying implementation may or may not return the same value for repeated calls to this function. Once the
handler has been used once in a call to nanos6_block_current_task and a call to nanos6_unblock_task, the
handler is discarded and a new one must be obtained to perform another cycle of blocking and unblocking.

Secondly, the nanos6_block_current_task function blocks the execution of the current task:

void nanos6_block_current_task(void *blocking_context);

The current task will block at least until another thread calls nanos6_unblock_task with the blocking context of that
task. The run-time system may choose to execute other tasks within the execution scope of this call.

Finally, the nanos6_unblock_task routine mark as unblocked a task previously or about to be blocked:

void nanos6_unblock_task(void *blocking_context);

This function can be called even before the target task actually blocks. In that case, the target task will not block because
someone already unblocked it. However, only one call to nanos6_unblock_task may precede its matching call to
nanos6_block_current_task. The return of this function does not guarantee that the blocked task has resumed yet
its execution; it only guarantees that it will be resumed.

Note that both nanos6_block_current_task and nanos6_unblock_task may be task scheduling points.

4.3 Time-based task blocking

OmpSs-2 defines a new API function named nanos6_wait_for that pauses the calling task for a specific time in mi-
croseconds. The task stops during that time approximately and yields the CPU to execute other tasks in the meanwhile:

uint64_t nanos6_wait_for(uint64_t time_us);

The function returns the actual time slept so that the caller task can take decisions based on that, for instance, to change
the next sleep time.

4.4 Polling services

Warning: The original polling service API has been removed. This section explains a more flexible, usable and
performant approach

The OmpSs-2 programming model offers a mechanism to perform dynamic and periodic polling which can be useful
for third party libraries. In this way, libraries do not need to leverage an additional thread (potentially oversubscribing
CPU resources), for instance, for checking asynchronous operations periodically.

We recommend spawning an independent task by calling the nanos6_spawn_function (see Spawning functions) and
passing the desired polling function and arguments as parameters. Then, the polling function can execute a loop (until
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the polling has to finish) where each iteration checks the corresponding asynchronous operations and then pauses the
task for specific amout of microseconds with nanos6_wait_for (see Time-based task blocking). During the pause
time, the CPU can be leveraged by the run-time system to execute other ready tasks.

This flexible mechanism allows changing the polling frequency dynamically. Moreover, the user may take into account
the actual slept time (returned by nanos6_wait_for) or the work load to recompute the required frequency.

We show an example in C++ below:

std::atomic<bool> _mustFinish(false);
std: :atomic<bool> _finished(false);

void polling_function(void *args)
{

uint64_t time_us = 500; // 500 microseconds

while (!_mustFinish.load()) {
// Call the actual polling user function
check_operations_completion();

// Pause the polling task
uint64_t actual_us = nanos6_wait_for(time_us);

// Change time_us if needed...
}
}

void polling_complete(void *args)

{
// Notify the spawner when the polling task has completed
_finished.store(true);

¥

int mainQ)
{
nanos6_spawn_function(polling_function, NULL,
polling_complete, NULL,

"polling task");

Y/

// Notify the polling task to stop
_mustFinish.store(true);

while (!_finished.load()) {
// Yield the CPU while we wait
nanos6_wait_for(100);
}
}
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4.5 Task external events

The task external events API provides the functionality of decoupling the release of task data dependencies to the
completion of external events. A task fully completes (i.e., releases its dependencies) once it finishes the execution of
its task body, and all externals events bound during its execution are fulfilled. This allows binding the completion of a
task to the finalization of any asynchronous operation.

This API is composed of three functions, which follow the style of the blocking API. Firstly, the
nanos6_get_current_event_counter returns an opaque pointer that is used to increase/decrease the number of
events:

void *nanos6_get_current_event_counter(void);

This function provides an implementation-specific data that we name event counter throughout the rest of this text. A
task can bind its completion to new external events by calling the following function:

void nanos6_increase_current_task_event_counter(
void *event_counter,
unsigned int increment

)H

This function atomically increases the number of pending external events of the calling task. The first parameter
event_counter must be the event counter of the invoking task, while the second parameter increment is the number
of external events to be bound. The presence of pending events in a task prevents the release of its dependencies, even
if the task has finished its execution. Note that only the task itself can bind its external events.

Then, the task itself, or another task or external thread, can fulfill the events of the task by calling the following function:

void nanos6_decrease_task_event_counter(
void *event_counter,
unsigned int decrement

s

This function atomically decreases the number of pending external events of a given task. The first parameter
event_counter is the event counter of the target task, while the second parameter decrement is the number of
completed external events to be decreased. Once the number of external events of a task becomes zero and it finishes
its execution, the task can release its dependencies.

Note that, all external events of a task can complete before it actually finishes its execution. In this case, the task will
release its dependencies as soon as it finishes its execution. Otherwise, the last call that makes the counter become
zero, will trigger the release of the dependencies.

Notice that the user is responsible for not fulfilling events that the target task has still not bound.

4.6 NUMA Awareness

OmpSs-2 offers a simple API to mitigate NUMA effects in NUMA systems, which are adverse effects caused by access-
ing data in remote NUMA nodes. By leveraging this API, users can allocate memory in NUMA systems using various
policies. In this way, the runtime library can apply NUMA-aware scheduling decisions which may benefit performance.

The NUMA API comprises the functions explained below, which allow users to allocate and free memory, and decide
how the data is distributed across NUMA nodes.

The nanos6_numa_alloc_block_interleave is used to allocate data. Users should replace their regular allocation
methodes (malloc, mmap, new, etc.) with this method. The function allocates a specific size of bytes, interleaving
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the allocation in blocks of size block_size bytes among the NUMA nodes specified by the mask:

void *nanos6_numa_alloc_block_interleave(uint64_t size, const nanos6_bitmask_t *mask,..
—uint64_t block_size);

The nanos6_numa_free is used to release previously allocated memory. The parameter ptr is the pointer to the
memory that will be freed, which should be the one returned by a previous allocation call:

void *nanos6_numa_free(void “ptr);

The nanos6_bitmask_set_wildcard sets a bitmask depending on a wildcard. The available wildcards are:
NUMA_ALL to set all the available NUMA nodes in the system, NUMA_ALL_ACTIVE to set the NUMA nodes which
the current process has all their cores available (i.e., the process can run on them), and NUMA_ANY_ACTIVE to set the
NUMA nodes which the current process has at least one core available:

void nanos6_bitmask_set_wildcard(nanos6_bitmask_t *bitmask, wildcard);

There are several functions to query and manipulate the bitmask, which are shown below. The
nanos6_count_setbits returns the number of enabled bits in a bitmask, which is useful to retrieve the NUMA
nodes available in the application. The rest of functions are not discussed as their behavior is self-explanatory:

uint64_t nanos6_count_setbits(const nanos6_bitmask_t *bitmask);

uint64_t nanos6_bitmask_isbitset(const nanos6_bitmask_t *bitmask, uint64_t n);
void nanos6_bitmask_clearall(nanos6_bitmask_t *bitmask);

void nanos6_bitmask_clearbit(nanos6_bitmask_t *bitmask, uint64_t n);

void nanos6_bitmask_setall (nanos6_bitmask_t *bitmask);

void nanos6_bitmask_setbit(nanos6_bitmask_t *bitmask, uint64_t n);

Next, we showcase the pseudo-code of a usage example of the OmpSs-2 NUMA API, where some arrays are allocated
and interleaved between NUMA nodes:

nanos6_bitmask_t bitmask;
nanos6_bitmask_set_wildcard(&bitmask, NUMA_ALL);
size_t numa_nodes = nanos6_count_setbits(&bitmask);
size_t size = N*sizeof(double);

size_t block_size = size/numa_nodes;

// Allocate vectors

double *a = nanos6_numa_alloc_block_interleave(size, &bitmask, block_size);
double *b = nanos6_numa_alloc_block_interleave(size, &bitmask, block_size);
double *c = nanos6_numa_alloc_block_interleave(size, &bitmask, block_size);

// Initialize
for (int i = ©; i < NUM_BLOCKS; i++) {
#pragma oss task out(a[i*TS ;TS], b[i*TS ;TS] c[i*TS ;TS])
{
// init a, b, c
}
}

(continues on next page)
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(continued from previous page)

// Execution
for (int step = 0; step < timesteps; step++) {
for (int i = 0; 1 < NUM_BLOCKS; i++) {
#pragma oss task in(a[i*TS ;TS]) out(c[i*TS ;TS])
{
// copy kernel
}

#pragma oss task in(c[i*TS ;TS]) out(b[i*TS ;TS])
{

// scale kernel
}

#pragma oss task in(a[i*TS ;TS], b[i*TS ;TS]) out(c[i*TS ;TS])
{

// add kernel
}

#pragma oss task in(b[i*TS ;TS], c[i*TS ;TS]) out(a[block*TS ;TS])
{
// triad kernel
}
}
}

// Release memory

nanos6_numa_free(a);
nanos6_numa_free(b);
nanos6_numa_free(c);
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