
User Guide of OmpSs-2 2023.11

BSC Programming Models

Nov 17, 2023

CONTENTS

1 Installation of OmpSs-2 3
1.1 Installation of ovni (optional) . 3
1.2 Installation of Nanos6 . 4

1.2.1 Build requirements . 4
1.2.2 Optional libraries and tools . 4
1.2.3 Build procedure . 4

1.3 Installation of NODES . 6
1.3.1 Build requirements . 7
1.3.2 Optional libraries and tools . 7
1.3.3 Build procedure . 7

1.4 Installation of LLVM-based compiler . 7
1.5 Installation of NODES . 8

1.5.1 Build requirements . 8
1.5.2 Optional libraries and tools . 9
1.5.3 Build procedure . 9

1.6 Installation of nOS-V . 9
1.6.1 Build requirements . 9
1.6.2 Optional libraries and tools . 10
1.6.3 Build procedure . 10

1.7 Installation of Mercurium legacy compiler . 10

2 LLVM-based compiler 11
2.1 Compiling OmpSs-2 programs using the LLVM-based compiler . 11

2.1.1 C/C++ programs . 11
2.1.2 Choosing between Nanos6 and NODES runtimes . 12

2.2 Problems with the LLVM-based compiler . 13
2.2.1 How can you help us to solve the problem quicker in the LLVM compiler? 13

2.3 LLVM-based compiler OmpSs-2 support . 14
2.3.1 Unsupported features . 14

3 Nanos6 Runtime Options 15
3.1 Executing and controlling number of CPUs . 15
3.2 Runtime configuration options . 15
3.3 Runtime variants . 16
3.4 Task data dependencies . 17
3.5 Task scheduler . 18
3.6 Task worksharings . 18
3.7 Stack size . 18
3.8 Dynamic Load Balancing (DLB) . 18
3.9 CPU manager policies . 19

i

3.10 Benchmarking, instrumenting and debugging . 19
3.10.1 Benchmarking . 20
3.10.2 Generating ovni traces . 20
3.10.3 Generating Extrae traces . 20
3.10.4 Generating CTF traces . 21
3.10.5 Verbose instrumentation . 26
3.10.6 Debugging . 27
3.10.7 Runtime loader verbosity . 27
3.10.8 Reporting runtime information . 27

3.11 Throttle . 28
3.12 Hardware counters . 29
3.13 OmpSs-2@Cluster . 29

4 NODES Runtime Options 31
4.1 Executing and controlling number of CPUs . 31
4.2 Debugging . 31
4.3 Generating ovni traces . 31

5 nOS-V Library 33
5.1 Linking with nOS-V . 33
5.2 Runtime configuration . 33
5.3 Debugging . 36
5.4 Generating ovni traces . 37

6 Mercurium Legacy Compiler Options 39
6.1 Mercurium drivers . 39
6.2 Common compilation flags . 39

6.2.1 Getting command line help . 39
6.2.2 Passing vendor-specific flags . 40

6.3 Compile OmpSs-2 programs . 40
6.3.1 Compile OpenMP programs with OmpSs-2 support . 41

6.4 Problems during compilation . 41
6.4.1 How can you help us to solve the problem quicker? . 41

Index 43

ii

User Guide of OmpSs-2 2023.11

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License.

The information included in this document is provided “as is”, with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification,
or sample. The document is not guaranteed to be complete and/or error-free at this stage and it is subject to changes
without furthernotice.

This document shall never be construed as a commitment by the Barcelona Supercomputing Center. The center will
not assume any responsibility for errors or omissions in it. You can send comments, corrections and/or suggestions
to pm-tools at bsc.es. This document is provided for informational purposes only. Due to the dynamic nature of the
contents is strongly recomended to check if there is an updated version in the following link:

Note: Find a PDF version of this document at https://pm.bsc.es/ftp/ompss-2/doc/user-guide/OmpSs-2-User-Guide.
pdf

CONTENTS 1

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://pm.bsc.es/ftp/ompss-2/doc/user-guide/OmpSs-2-User-Guide.pdf
https://pm.bsc.es/ftp/ompss-2/doc/user-guide/OmpSs-2-User-Guide.pdf

User Guide of OmpSs-2 2023.11

2 CONTENTS

CHAPTER

ONE

INSTALLATION OF OMPSS-2

The first step is choosing a directory where you will install OmpSs-2. In this document this directory will be referred to
as the INSTALLATION_PREFIX directory. We recommend you to set an environment variable INSTALLATION_PREFIX
with the desired installation directory. For instance:

$ export INSTALLATION_PREFIX=$HOME/installation/ompss-2

1.1 Installation of ovni (optional)

The ovni project implements a fast instrumentation library that records small events during the execution of programs
to later investigate how the execution happened using Paraver.

The Nanos6 runtime system can be configured with ovni to extract execution traces. Building Nanos6 with ovni is
optional but highly recommended. This page is just a quick summary of the installation of ovni. For a more detailed
information check ovni GitHub and ovni online documentation.

1. Get an ovni release tarball from https://github.com/bsc-pm/ovni.

2. Unpack the tarball and enter the just created directory:

$ tar -xvf ovni-xxx.tar.gz
$ cd ovni-xxx

3. Export a target installation directory for ovni:

$ export OVNI_PREFIX=$HOME/installation/ovni

4. Create and move to a build directory:

$ mkdir build
$ cd build

5. Configure it with CMake:

$ cmake -DCMAKE_INSTALL_PREFIX=$OVNI_PREFIX

6. Build and install:

$ make
$ make install

3

https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver
https://github.com/bsc-pm/ovni
https://ovni.readthedocs.io
https://github.com/bsc-pm/ovni

User Guide of OmpSs-2 2023.11

Note: ovni may need other packages as dependencies (e.g., an MPI installation) and may use several options with the
CMake command. Please check the ovni online documentation for more details.

1.2 Installation of Nanos6

Nanos6 is a runtime that implements the OmpSs-2 parallel programming model, developed by the Programming Models
group at the Barcelona Supercomputing Center.

Nanos6 can be obtained from the GitHub public repository or by contacting us at pm-tools@bsc.es.

1.2.1 Build requirements

To install Nanos6 the following tools and libraries must be installed:

1. automake, autoconf, libtool, pkg-config, make and a C and C++ compiler

2. boost >= 1.59

3. hwloc

4. numactl

1.2.2 Optional libraries and tools

In addition to the build requirements, the following libraries and tools enable additional features:

1. Extrae to generate execution traces for offline performance analysis with Paraver

2. CUDA to enable CUDA tasks

3. PGI or NVIDIA HPC-SDK to enable OpenACC tasks

4. PAPI to generate real-time statistics of hardware counters

5. PQOS to generate real-time statistics of hardware counters

6. DLB to enable dynamic management and sharing of computing resources

7. jemalloc to use jemalloc as the default memory allocator, providing better performance than the
default glibc implementation. Jemalloc software must be compiled with --enable-stats and
--with-jemalloc-prefix=nanos6_je_ to link with the runtime

8. ovni to generate execution traces for performance analysis with Paraver

1.2.3 Build procedure

Nanos6 uses the standard GNU automake and libtool toolchain. When cloning from a repository, the building envi-
ronment must be prepared through the command below. When the code is distributed through a tarball, it usually does
not need that command.

$./autogen.sh

4 Chapter 1. Installation of OmpSs-2

https://ovni.readthedocs.io
https://pm.bsc.es/
https://pm.bsc.es/
http://www.bsc.es/
https://github.com/bsc-pm/nanos6
mailto:pm-tools@bsc.es
http://boost.org
https://www.open-mpi.org/projects/hwloc/
http://oss.sgi.com/projects/libnuma/
https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://developer.nvidia.com/cuda-zone
https://pgroup.com
https://icl.utk.edu/papi
https://github.com/intel/intel-cmt-cat
https://pm.bsc.es/dlb
https://github.com/jemalloc/jemalloc
https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver

User Guide of OmpSs-2 2023.11

Note: The autogen.sh script was recently introduced. Please use this script instead of the autoreconf command;
otherwise the autotools configuration will fail.

Then execute the following commands:

$./configure --prefix=$INSTALLATION_PREFIX ...other options...
$ make
$ make install

where $INSTALLATION_PREFIX is the directory into which to install Nanos6.

The configure script accepts the following options:

1. --with-nanos6-clang=prefix to specify the prefix of the LLVM/Clang installation that supports OmpSs-2

2. --with-nanos6-mercurium=prefix to specify the prefix of the Mercurium installation

3. --with-boost=prefix to specify the prefix of the Boost installation

4. --with-papi=prefix to specify the prefix of the PAPI installation

5. --with-libnuma=prefix to specify the prefix of the numactl installation

6. --with-extrae=prefix to specify the prefix of the extrae installation

7. --with-dlb=prefix to specify the prefix of the DLB installation

8. --with-papi=prefix to specify the prefix of the PAPI installation

9. --with-pqos=prefix to specify the prefix of the PQoS installation

10. --with-cuda[=prefix] to enable support for CUDA tasks

11. --enable-openacc to enable support for OpenACC tasks; requires PGI compilers

12. --with-pgi=prefix to specify the prefix of the PGI compilers installation, in case they are not in $PATH

13. --enable-monitoring to enable monitoring and predictions of task/CPU/thread statistics

14. --enable-chrono-arch to enable an architecture-based timer for the monitoring infrastructure

15. --with-ovni=prefix to specify the prefix of the ovni installation and enable the ovni instrumentation

The hwloc dependency is mandatory, and, by default, an internal hwloc is embedded to the Nanos6 library. This
behavior can be modified through the –with-hwloc option, which can take the following values:

• --with-hwloc=embedded: The hwloc is built and embedded into the Nanos6 library as an internal module.
This is useful when user programs may have third-party software (e.g., MPI libraries) that depend on a different
hwloc version and may conflict with the one used by Nanos6. In this way, the hwloc library is internal and is
only used by Nanos6. This is the default behavior if the option is not present, or no value is provided. See
nanos6-build-embedding for more information

• --with-hwloc=pkgconfig: The hwloc is an external installation and Nanos6 should discover it through the
pkg-config tool. Make sure to set the PKG_CONFIG_PATH if the hwloc is not installed in non-standard directories

• --with-hwloc=<prefix>: A prefix of an external hwloc installation

The jemalloc dependency is optional but highly recommended. This allocator significantly improves the performance
of the Nanos6 runtime by optimizing the memory allocations. By default, an internal jemalloc is embedded to the
Nanos6 library. This behavior can be modified through the --with-jemalloc option, which can take the following
values:

1.2. Installation of Nanos6 5

User Guide of OmpSs-2 2023.11

• --with-jemalloc=embedded: The jemalloc is built and embedded into Nanos6 as an internal library.
The building process installs the jemalloc headers and libraries in $INSTALLATION_PREFIX/deps/nanos6/
jemalloc and dynamically links our runtime against the jemalloc library. This is the default behavior if the
option is not provided. See nanos6-build-embedding for more information

• --with-jemalloc=<prefix>: A prefix of an external jemalloc installation configured with the
--enable-stats and --with-jemalloc-prefix=nanos6_je_ options

• --with-jemalloc=no or --without-jemalloc: Disable the jemalloc allocator (not recommended)

The location of an external hwloc can be retrieved through pkg-config when specifying --with-hwloc=pkgconfig.
If it is installed in a non-standard location, pkg-config can be told where to find it through the PKG_CONFIG_PATH
environment variable. For instance:

$ export PKG_CONFIG_PATH=/apps/HWLOC/2.0.0/INTEL/lib/pkgconfig:$PKG_CONFIG_PATH

The --with-cuda flag is needed to enable CUDA tasks. The location of CUDA can be retrieved automatically, if it is
in standard system locations (/usr/lib, /usr/include, etc), or through pkg-config. Alternatively, for non-standard
installation paths, it can be specified using the optional =prefix of the parameter.

The --enable-openacc flag is needed to enable OpenACC tasks. The location of PGI compilers can be retrieved
from the $PATH variable, if it is not specified through the --with-pgi parameter.

Optionally, if you passed any valid LLVM/Clang or Mercurium installation, you can execute the Nanos6 tests by run-
ning:

$ make check

Embedding software dependencies

As mentioned above, there are some software dependencies that may be embedded into Nanos6. This is the case for
hwloc and jemalloc, which will be embedded by default. The sources of these embedded dependencies are taken from
the deps sub-directory in this repository. Inside the sub-directory, there is a default hwloc and jemalloc source tarballs.
These tarballs are automatically extracted into deps/hwloc and deps/jemalloc by our autogen.sh script.

These are the source packages that are then built when choosing --with-hwloc=embedded or
--with-jemalloc=embedded. You may change the embedded software version by placing the desired tarball
inside the deps folder and re-running autogen.sh with the option --embed-<SOFTWARE> <VERSION>. Currently,
<SOFTWARE> can be hwloc or jemalloc and <VERSION> should be the desired version number of that software. For
instance, a valid option could be:

./autogen.sh --embed-jemalloc 5.3.0

For the moment, the tarballs must follow the format deps/<SOFTWARE>-<VERSION>.tar.gz.

1.3 Installation of NODES

The NODES (nOS-V based OmpSs-2 DEpendency System) runtime is a library designed to work on top of the nOS-
V runtime. It includes most of the functionalities from its predecessor, Nanos6, whilst leaving the interaction with
the system to nOS-V. NODES implements the OmpSs-2 parallel programming model, developed by the Programming
Models group at the Barcelona Supercomputing Center.

NODES can be obtained from the GitHub public repository or by contacting us at pm-tools@bsc.es.

6 Chapter 1. Installation of OmpSs-2

https://pm.bsc.es/
https://pm.bsc.es/
http://www.bsc.es/
https://github.com/bsc-pm/nodes
mailto:pm-tools@bsc.es

User Guide of OmpSs-2 2023.11

1.3.1 Build requirements

The following software is required to build and install NODES:

1. automake, autoconf, libtool, pkg-config, make and a C and C++11 compiler

2. boost >= 1.71

3. nOS-V

1.3.2 Optional libraries and tools

The following software is required to enable additional optional features:

1. ovni to instrument and generate execution traces for offline performance analysis with Paraver

1.3.3 Build procedure

NODES uses the standard GNU automake and libtool toolchain. When cloning from a repository, the building envi-
ronment must be prepared through the command below. When the code is distributed through a tarball, it usually does
not need that command.

$ autoreconf -fiv

Then execute the following commands:

$./configure --prefix=$INSTALLATION_PREFIX ...other options...
$ make
$ make install

where $INSTALLATION_PREFIX is the directory into which to install NODES.

The configure script accepts the following options:

1. --with-nosv=prefix to specify the prefix of the nOS-V installation

2. --with-boost=prefix to specify the prefix of the Boost installation

3. --with-ovni=prefix to specify the prefix of the ovni installation and enable the ovni instrumentation

4. --with-nodes-clang=prefix to specify the prefix of the LLVM/Clang installation that supports OmpSs-2

Optionally, passing a valid LLVM/Clang installation when configuring enables executing the NODES tests by running:

$ make check

1.4 Installation of LLVM-based compiler

The LLVM website describes a list of build requirements of LLVM.

You should be able to compile and install the LLVM-based compiler with the following commands:

$ cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$INSTALLATION_PREFIX \
-DLLVM_ENABLE_PROJECTS=clang \

(continues on next page)

1.4. Installation of LLVM-based compiler 7

http://boost.org
https://github.com/bsc-pm/nos-v
https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver
http://www.llvm.org/docs/GettingStarted.html#requirements

User Guide of OmpSs-2 2023.11

(continued from previous page)

-DLLVM_INSTALL_TOOLCHAIN_ONLY=ON \
-DCLANG_DEFAULT_OMPSS2_RUNTIME=libnanos6 \
-DCLANG_DEFAULT_NANOS6_HOME=$INSTALLATION_PREFIX \
-DCLANG_DEFAULT_NODES_HOME=$INSTALLATION_PREFIX

$ make
$ make install

The LLVM/Clang can compile OmpSs-2 code and generate the binaries for both Nanos6 and NODES runtime sys-
tems. The support for OmpSs-2 and their runtime systems is always enabled. Deciding whether an OmpSs-2 binary is
generated for a specific runtime is done when compiling the user application with clang.

During the building stage, LLVM/Clang only needs to know where to find the runtime libraries. The following CMake
options are available to specify the path to the runtime libraries and which is the default runtime for OmpSs-2 binaries:

• CLANG_DEFAULT_NANOS6_HOME to specify the default path to the Nanos6 installation. If not provided, the de-
fault path is the installation prefix of LLVM/Clang. This Nanos6 path can be overriden when compiling OmpSs-2
applications by defining the NANOS6_HOME environment variable

• CLANG_DEFAULT_NODES_HOME to specify the default path to the NODES installation. If not provided, the default
path is the installation prefix of LLVM/Clang. This NODES path can be overriden when compiling OmpSs-2
applications by defining the NODES_HOME environment variable

• CLANG_DEFAULT_OMPSS2_RUNTIME to specify which runtime library is targeted by default if the user did not
specify which runtime when compiling an application. The accepted values are libnanos6 (default) and
libnodes

More details about customizing the LLVM build can be found in the LLVM website

1.5 Installation of NODES

The NODES (nOS-V based OmpSs-2 DEpendency System) runtime is a library designed to work on top of the nOS-
V runtime. It includes most of the functionalities from its predecessor, Nanos6, whilst leaving the interaction with
the system to nOS-V. NODES implements the OmpSs-2 parallel programming model, developed by the Programming
Models group at the Barcelona Supercomputing Center.

NODES can be obtained from the GitHub public repository or by contacting us at pm-tools@bsc.es.

1.5.1 Build requirements

The following software is required to build and install NODES:

1. automake, autoconf, libtool, pkg-config, make and a C and C++11 compiler

2. boost >= 1.71

3. nOS-V

8 Chapter 1. Installation of OmpSs-2

http://www.llvm.org/docs/GettingStarted.html#getting-the-source-code-and-building-llvm
https://pm.bsc.es/
https://pm.bsc.es/
http://www.bsc.es/
https://github.com/bsc-pm/nodes
mailto:pm-tools@bsc.es
http://boost.org
https://github.com/bsc-pm/nos-v

User Guide of OmpSs-2 2023.11

1.5.2 Optional libraries and tools

The following software is required to enable additional optional features:

1. ovni to instrument and generate execution traces for offline performance analysis with Paraver

1.5.3 Build procedure

NODES uses the standard GNU automake and libtool toolchain. When cloning from a repository, the building envi-
ronment must be prepared through the command below. When the code is distributed through a tarball, it usually does
not need that command.

$ autoreconf -fiv

Then execute the following commands:

$./configure --prefix=$INSTALLATION_PREFIX ...other options...
$ make
$ make install

where $INSTALLATION_PREFIX is the directory into which to install NODES.

The configure script accepts the following options:

1. --with-nosv=prefix to specify the prefix of the nOS-V installation

2. --with-boost=prefix to specify the prefix of the Boost installation

3. --with-ovni=prefix to specify the prefix of the ovni installation and enable the ovni instrumentation

4. --with-nodes-clang=prefix to specify the prefix of the LLVM/Clang installation that supports OmpSs-2

Optionally, passing a valid LLVM/Clang installation when configuring enables executing the NODES tests by running:

$ make check

1.6 Installation of nOS-V

The nOS-V runtime is a lightweight tasking library with co-execution capabilities, which is designed to be used as a
core for other more complex parallel runtimes and implements the nOS-V tasking API.

nOS-V can be obtained from the GitHub public repository or by contacting us at pm-tools@bsc.es.

1.6.1 Build requirements

The following software is required to build and install nOS-V:

1. automake, autoconf, libtool, make and a C11 compiler

2. libnuma

1.6. Installation of nOS-V 9

https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver
https://github.com/bsc-pm/nos-v
mailto:pm-tools@bsc.es
http://oss.sgi.com/projects/libnuma/

User Guide of OmpSs-2 2023.11

1.6.2 Optional libraries and tools

The following software is required to enable additional optional features:

1. ovni to instrument and generate execution traces for offline performance analysis with Paraver

2. PAPI to generate real-time statistics of hardware counters

1.6.3 Build procedure

nOS-V uses the standard GNU automake and libtool toolchain. When cloning from a repository, the building environ-
ment must be prepared through the command below. When the code is distributed through a tarball, it usually does not
need that command.

$ autoreconf -fiv

Then execute the following commands:

$./configure --prefix=$INSTALLATION_PREFIX ...other options...
$ make
$ make install

where $INSTALLATION_PREFIX is the directory into which to install nOS-V.

The configure script accepts the following options:

1. --with-ovni=prefix to specify the prefix of the ovni installation and enable the ovni instrumentation

2. --with-libnuma=prefix to specify the prefix of the libnuma installation

3. --with-papi=prefix to specify the prefix of the PAPI installation and enable monitoring features

4. CACHELINE_WIDTH=width to specify the length in bytes of a cache line in the target architecture

After building, nOS-V tests can be executed using:

$ make check

1.7 Installation of Mercurium legacy compiler

Important: Mercurium is the OmpSs-2 legacy compiler and is unsupported now. You do not have to install it to use
OmpSs-2. We recommend to use the LLVM-based compiler. Check InstallationLLVM and LLVM-based compiler.

You can find the build requirements, the configuration flags and the instructions to build Mercurium in the following
link: https://github.com/bsc-pm/mcxx

You should be able to compile and install Mercurium with the following commands:

$ autoreconf -fiv
$./configure --prefix=$INSTALLATION_PREFIX --enable-ompss-2 --with-nanos6=$INSTALLATION_
→˓PREFIX
$ make
$ make install

10 Chapter 1. Installation of OmpSs-2

https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver
https://icl.utk.edu/papi
https://github.com/bsc-pm/mcxx

CHAPTER

TWO

LLVM-BASED COMPILER

This section describes how to use the LLVM-based compiler to compile OmpSs-2 programs. This compiler is based
on the open-source LLVM infrastructure and is licensed under the LLVM license.

2.1 Compiling OmpSs-2 programs using the LLVM-based compiler

2.1.1 C/C++ programs

Following is a very simple OmpSs-2 program in C:

/* test.c */
#include <stdio.h>

int main(int argc, char *argv[])
{
int x = argc;
#pragma oss task inout(x)
{
x++;

}
#pragma oss task in(x)
{
printf("argc + 1 == %d\n", x);

}
#pragma oss taskwait
return 0;

}

Compile it using clang and the -fompss-2 flag:

$ clang -o test -fompss-2 test.c

Important: Do not forget the flag -fompss-2 in both compilation and linking stages of your application. Otherwise,
your application will not be compiled with parallel support or not linked to the tasking runtime library.

And run it:

$./test
argc + 1 == 2

11

https://www.llvm.org
https://releases.llvm.org/10.0.0/LICENSE.TXT

User Guide of OmpSs-2 2023.11

Use the driver clang++ to compile C++ applications:

/* test.cpp */
#include <iostream>

template <typename T>
void test(T x)
{
T t = x;
#pragma oss task inout(x)
{
x *= 2;

}
#pragma oss task in(x)
{
std::cout << t << " * 2 == " << x << "\n";

}
#pragma oss taskwait

}

int main(int argc, char *argv[])
{
test(42);
test(84.1);
return 0;

}

Compile it using clang++ and the -fompss-2 flag:

$ clang++ -o test -fompss-2 test.cpp

And run it:

$./test
42 * 2 = 84
84.1 * 2 = 168.2

2.1.2 Choosing between Nanos6 and NODES runtimes

As stated in InstallationLLVM, our LLVM/Clang can compile OmpSs-2 programs targeting the Nanos6 or the NODES
runtime systems. LLVM/Clang follows the order below to decide which runtime system to target when compiling an
OmpSs-2 program. The list is ordered from most to least priority:

1. The LLVM/Clang’s -fompss-2 flag accepts an optional value to explicitly choose the runtime library when
compiling an application. The accepted values are libnano6 and libnodes. For instance, the flag
-fompss-2=libnanos6 will make the application to target the Nanos6 runtime

2. Otherwise, LLVM/Clang reads the OMPSS2_RUNTIME environment variable when compiling or linking OmpSs-2
applications. Similarly, the accepted values for the envar are libnanos6 and libnodes

3. Lastly, LLVM/Clang uses the default runtime specified through the CLANG_DEFAULT_OMPSS2_RUNTIME CMake
option at the building stage. As shown in InstallationLLVM, the libnanos6 is the default if not specified

Notice that is user’s responsability to provide the same runtime value when compiling and linking all source code files
of the same application.

12 Chapter 2. LLVM-based compiler

User Guide of OmpSs-2 2023.11

Once a runtime has been chosen, clang has to decide which is the path where it can find that runtime library. The
compiler uses the runtime library directory following these rules from most to least priority:

1. LLVM/Clang reads the NANOS6_HOME or NODES_HOME environment variables to know the installation path of
Nanos6 and NODES, respectively. If defined, the default paths to the the runtimes provided at the building stage
are ignored

2. Otherwise, the paths provided through the CLANG_DEFAULT_NANOS6_HOME and CLANG_DEFAULT_NODES_HOME
CMake options at the building stage are used. See InstallationLLVM

2.2 Problems with the LLVM-based compiler

While we put big efforts to make a reasonably robust compiler, you may encounter a bug or problem when using it.
There are several errors of different nature that you may run into:

• The compiler ends abnormally with an internal error telling you to report a bug.

• The compiler does not crash but gives an error on your input code and compilation stops, as if your code were
not valid.

• The compiler forgets something in the generated code and linking fails.

• Compilation succeeds but the program crashes at runtime.

2.2.1 How can you help us to solve the problem quicker in the LLVM compiler?

If clang crashes, it will generate a reproducer automatically with a message like this:

PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:
Preprocessed source(s) and associated run script(s) are located at:
clang: note: diagnostic msg: /tmp/t-56517d.c
clang: note: diagnostic msg: /tmp/t-56517d.sh
clang: note: diagnostic msg:

Send us an email to pm-tools at bsc.es with those two files attached. Reproducer files are usually very large.
Please compress them with gzip (or bzip2 or any similar tool).

If clang does not crash, then follow the next steps to obtain a reproducer:

1. Figure out the compilation command of the file that fails to compile. Make sure you can replicate the problem
using that compilation command alone.

2. Add the option -gen-reproducer to the compilation command. Clang will generate a reproducer. Send us the
reproducer files.

If for some reason the option -gen-reproducer does not work for you, use the following steps:

1. Figure out the compilation command of the file that fails to compile. Make sure you can replicate the problem
using that compilation command alone.

2. If your compilation command includes -c, replace it by -E. If it does not include -c simply add -E.

3. If your compilation command includes -o file (or -o file.o) replace it by -o file.ii. If it does not
include -o, simply add -o file.ii.

2.2. Problems with the LLVM-based compiler 13

User Guide of OmpSs-2 2023.11

4. Now run the compiler with this modified compilation command. It should have generated a file.ii.

5. Send us that file. Please compress it with gzip (or bzip2 or any similar tool)

2.3 LLVM-based compiler OmpSs-2 support

The LLVM-based compiler for OmpSs-2 does not support all the features of the legacy Mercurium compiler.

2.3.1 Unsupported features

Feature Notes and workarounds Planned as future
work?

OpenMP compatibility
mode

LLVM already supports OpenMP and it would conflict in the
compiler itself

No

Fortran support Planned once the LLVM’s flang project reaches sufficient ma-
turity

Yes

14 Chapter 2. LLVM-based compiler

https://github.com/llvm/llvm-project/tree/main/flang

CHAPTER

THREE

NANOS6 RUNTIME OPTIONS

This section describes how to run OmpSs-2 applications and which runtime options are available.

3.1 Executing and controlling number of CPUs

Nanos6 applications can be compiled and executed in this way:

Compile OmpSs-2 program with LLVM/Clang
$ clang -fompss-2 app.c -o app

Execute on all available cores of the current session
$./app

The number of cores that are used is controlled by running the application through the taskset command. For instance:

Execute on cores 0, 1, 2 and 4
$ taskset -c 0-2,4 ./app

3.2 Runtime configuration options

The behaviour of the Nanos6 runtime can be tuned after compilation by means of a configuration file. All former Nanos6
environment variables are obsolete and will be ignored by the runtime system. Currently, the supported configuration
file format is TOML v1.0.0-rc1. The default configuration file is named nanos6.toml and can be found in the share
directory of the Nanos6 installation:

$INSTALLATION_PREFIX/share

Note: The nanos6.toml file was recently moved from $INSTALLATION_PREFIX/share/doc/nanos6/scripts to
the $INSTALLATION_PREFIX/share directory

To override the default configuration, it is recommended to copy the default file and change the relevant options. The
first configuration file found will be interpreted, according to the following order:

1. The file pointed by the NANOS6_CONFIG environment variable.

2. The file nanos6.toml found in the current working directory.

3. The file nanos6.toml found in the installation path (default file).

15

https://toml.io/en/v1.0.0-rc.1

User Guide of OmpSs-2 2023.11

The configuration file is organized into different sections and subsections. Option names have the format <section>[.
<subsection>].<option_name>. For instance, the dependency system that the runtime should load is specified by
the version.dependencies option. Inside the TOML configuration file, that option is placed inside the version
section as follows:

[version]
dependencies = "discrete"

Alternatively, if the configuration has to be changed programatically and creating new files is not practical, the con-
figuration options can be overriden using the NANOS6_CONFIG_OVERRIDE environment variable. The content of this
variable has to be in the format option1=value1,option2=value2,option3=value3,..., providing a comma-
separated list of assignations.

For example, you can run the following command to change the dependency implementation and use CTF instrumen-
tation:

NANOS6_CONFIG_OVERRIDE="version.dependencies=discrete,version.instrument=ctf" ./ompss-
→˓program`

By default, the runtime system emits a warning during initialization when it detects the definition of irrelevant environ-
ment variables that start with the NANOS6 prefix. The exceptions are the previous two variables NANOS6_CONFIG and
NANOS6_CONFIG_OVERRIDE, but also the NANOS6_HOME variable. This latter is not relevant for the Nanos6 runtime
system but it is often defined by users and it is relevant for the OmpSs-2 LLVM-based compiler. The warning can be
disabled by setting the loader.warn_envars configuration option to false.

3.3 Runtime variants

There are several Nanos6 runtime variants, each one focusing on different aspects of parallel executions: performance,
debugging, instrumentation, etc. OmpSs-2 applications do not require recompiling their code to run with instrumenta-
tion, e.g., to extract Extrae traces or to generate additional information. This is instead controlled through configration
options, at run-time. Users can select a specific Nanos6 variant when running an application by setting the version.
instrument, version.debug and version.dependencies configuration variables. This section explains the dif-
ferent values for these variables.

The instrumentation is specified by the version.instrument configuration variable and can take the following values:

version.instrument = none
This is the default value and does not enable any kind of instrumentation. This is the variant that should be used
when executing peformance experiments since it is the one that adds no instrumentation overhead. Continue
reading this section for more information about performance runs with Nanos6.

version.instrument = ovni
Instrumented with ovni to generate Paraver traces. See Generating ovni traces.

version.instrument = extrae
Instrumented to produce Paraver traces. See: Generating Extrae traces.

version.instrument = ctf
Instrumented to produce CTF traces and convert them to the Paraver format. See: Generating CTF traces.

version.instrument = verbose
Instrumented to emit a log of the execution. See: Verbose instrumentation.

version.instrument = lint
Instrumented to support the OmpSs-2@Linter tool.

16 Chapter 3. Nanos6 Runtime Options

https://github.com/bsc-pm/ovni
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://github.com/bsc-pm/ompss-2-linter

User Guide of OmpSs-2 2023.11

Note: The graph and stats instrumentations have been recently removed and are no longer available

By default, Nanos6 loads runtime variants that are compiled using high optimization flags and most of the internal
assertions turned off. This is the configuration that should be used along with the default none instrumentation for
benchmarking experiments. However, these are not the only options that provide the best performance. See Bench-
marking for more information.

Sometimes it is useful to run an OmpSs-2 program with debug information for debugging purposes (e.g., when a
program crashes). The runtime system provides the option version.debug to load a runtime variant that has been
compiled without optimizations and with all internal assertions turned on. The default value for this option is false
(no debug), but can be changed to true to enable the debug information. Please note that the runtime system will
significantly decrease its performance when enabling this option. Additionally, all instrumentation variants have their
optimized and debug variants.

Finally, the last configuration variable used to specify a runtime variant is the version.dependencies, which is
explained in the next section.

3.4 Task data dependencies

The Nanos6 runtime has support for different dependency implementations. The discrete dependencies are the de-
fault dependency implementation. This is the most optimized implementation but it does not fully support the OmpSs-2
dependency model since it does not support region dependencies. In the case the user program requires region depen-
dencies (e.g., to detect dependencies among partial overlapping dependency regions), Nanos6 privides the regions
implementation, which is completely spec-compliant. This latter is also the only implementation that supports OmpSs-
2@Cluster.

The dependency implementation can be selected at run-time through the version.dependencies configuration vari-
able. The available implementations are:

version.dependencies = "discrete"
Default and optimized implementation not supporting region dependencies. Region syntax is supported but will
behave as a discrete dependency to the first address. Scales better than the default implementation thanks to its
simpler logic and is functionally similar to traditional OpenMP model.

version.dependencies = "regions"
Supporting all dependency features. Default implementation in OmpSs-2@Cluster installations.

In cases where an OmpSs-2 program requires region dependency support, we recommended to add the declarative
directive assert in any of the program source files, as shown below. Then, before the program is started, the runtime
system will check whether the loaded dependency implementation is regions and will abort the execution if it is not
true.

#pragma oss assert("version.dependencies==regions")

int main() {
// ...

}

Notice that the assert directive could also check whether the runtime is using discrete dependencies.

3.4. Task data dependencies 17

mailto:OmpSs-2@Cluster
mailto:OmpSs-2@Cluster
mailto:OmpSs-2@Cluster

User Guide of OmpSs-2 2023.11

3.5 Task scheduler

The scheduling infrastructure provides the following configuration options to modify the behavior of the task scheduler:

scheduler.policy (default: fifo)
Specifies whether ready tasks are added to the ready queue using a FIFO (fifo) or a LIFO (lifo) policy.

scheduler.immediate_successor (default: 0.75)
Probability of enabling the immediate successor feature to improve cache data reutilization between successor
tasks. If enabled, when a CPU finishes a task it starts executing the successor task (computed through their data
dependencies).

scheduler.priority (default: true)
Boolean indicating whether the scheduler should consider the task priorities defined by the user in the task’s
priority clause.

3.6 Task worksharings

Important: Task worksharings, which were implemented by the task for clause, are no longer part of the OmpSs-2
specification.

3.7 Stack size

By default, Nanos6 allocates stacks of 8 MB for its worker threads. In some codes this may not be enough. For instance,
when converting Fortran codes, some global variables may need to be converted into local variables. This may increase
substantially the amount of stack required to run the code and may surpass the space that is available.

To solve that problem, the stack size can be set through the misc.stack_size configuration variable. Its value is
expressed in bytes but it also accepts the K, M, G, T and E suffixes, that are interpreted as power of 2 multipliers. For
instance:

[misc]
stack_size = "16M"

3.8 Dynamic Load Balancing (DLB)

DLB is a library devoted to speed up hybrid parallel applications and maximize the utilization of computational re-
sources. More information about this library can be found at the following link: https://pm.bsc.es/dlb.

To enable DLB support for Nanos6, a working DLB installation must be present in your environment. Configuring
Nanos6 with DLB support is done through the --with-dlb flag, specifying the root directory of the DLB installation.

After configuring DLB support for Nanos6, its enabling can be controlled at run-time through the dlb.enabled con-
figuration variable. To run Nanos6 with DLB support then, this variable must be set to true (dlb.enabled=true),
since by default DLB is disabled.

Once DLB is enabled for Nanos6, OmpSs-2 applications will benefit from dynamic resource sharing automatically. As-
suming that DLB has been explicitly enabled at the configuration file, the following example showcases the executions
of two applications that share the available CPUs between them:

18 Chapter 3. Nanos6 Runtime Options

https://pm.bsc.es/dlb

User Guide of OmpSs-2 2023.11

Run the first application using 10 CPUs (0, 1, ..., 9)
$ taskset -c 0-9 ./merge-sort.test &

Run the second application using 10 CPUs (10, 11, ..., 19)
$ taskset -c 10-19 ./cholesky-fact.test &

Now those applications should be running while sharing resources
...

3.9 CPU manager policies

Nanos6 offers different policies when handling CPUs through the cpumanager.policy configuration variable:

cpumanager.policy = idle
Activates the idle policy, in which idle threads halt on a blocking condition, while not consuming CPU cycles.

cpumanager.policy = hybrid
Activates the hybrid policy, in which idle threads continue spinning for a specific number of iterations while
consuming CPU cycles and then halt on a blocking condition.

cpumanager.policy = busy
Activates the busy policy, in which idle threads continue spinning and never halt, consuming CPU cycles.

cpumanager.policy = lewi
If DLB is enabled, activates the LEnd When Idle policy, which is similar to the idle policy but in DLB mode. In
this policy, idle threads lend their CPU to other runtimes or processes.

cpumanager.policy = greedy
If DLB is enabled, activates the greedy policy, which disables lending CPUs from the process’ mask, but allows
acquiring and lending external CPUs.

cpumanager.policy = default
Fallback to the default implementation. If DLB is disabled, this policy falls back to the hybrid policy, while if
DLB is enabled it falls back to the lewi policy.

Furthermore, the number of busy-wait iterations performed in the hybrid policy can be controlled by the following
configuration variable:

cpumanager.busy_iters = X
This variable indicates the collective number of busy iterations performed by all CPUs. Thus, when setting a
value of X, idle threads will spin for X/numCPUs iterations before halting. By default this number is set to 240K
iterations collectively.

3.10 Benchmarking, instrumenting and debugging

As previously stated, there are several Nanos6 runtime variants, each one focusing on different aspects of parallel exe-
cutions: performance, debugging, instrumentation, etc. OmpSs-2 applications do not require recompiling their code to
run with instrumentation, e.g., to extract Paraver traces or to generate additional information. This is instead controlled
through configration options, at run-time. Users can select a specific Nanos6 variant when running an application by
setting the version.instrument, version.debug and version.dependencies configuration variables. The next
subsections explain the details of the different variants and options of Nanos6.

3.9. CPU manager policies 19

User Guide of OmpSs-2 2023.11

Important: The ovni instrumentation is the recommended variant to extract Paraver traces. Our support for Extrae
and CTF instrumentations is deprecated, so they will not include new further features.

3.10.1 Benchmarking

Nanos6 loads an optimized runtime variant if the version.debug option is disabled (by default is disabled). The
optimized runtime variants are compiled with high optimization flags, they do not perform validity checks and they do
not provide debug information. The benchmarking of OmpSs-2 applications should be performed with an optimized
version (version.debug=false) and no instrumentation (version.instrument=none) to get optimal perfomance.

Additionally, Nanos6 offers an extra performance option called Turbo, which enables even more aggressive optimiza-
tions. This option is disabled by default but it can be enabled by setting turbo.enabled=true. Currently, this option
enables two Intel® floating-point (FP) unit optimizations in all tasks: flush-to-zero (FZ) and denormals are zero (DAZ).
However, please note these FP optimizations could alter the precision of floating-point computations.

We recommend to combine a optimized version without instrumentation (version.debug=false and version.
instrument=none) with the Turbo feature (turbo.enabled=true), the discrete dependency implementation
(version.dependencies=discrete) and the Jemalloc memory allocator to obtain the best performance.

Jemalloc must be enabled at configuration time by passing --with-jemalloc to the Nanos6 configure script. See the
Nanos6 building requirements to check which are the requirements for supporting jemalloc.

3.10.2 Generating ovni traces

Nanos6 can generate execution traces with the ovni library, which generates lightweight binary traces, and it is possible
to mix ovni-instrumented libraries together with an OmpSs-2 program and obtain a single coherent trace.

To enable the generation of ovni traces, Nanos6 must be built with the --with-ovni option, and without
--disable-ovni-instrumentation. The application must run with the version.instrument=ovni configura-
tion option. The trace will be left in a ovni/ directory, which can be transformed into a Paraver trace with the ovniemu
utility. The Paraver configuration files (views) can be found in the ovni/cfg directory.

See the ovni documentation for more details.

The level of detail can be controlled with the instrument.ovni.level configuration option, a higher number includes
more events but also incurs in a larger performance penalty.

3.10.3 Generating Extrae traces

To generate a Paraver trace using Extrae, the version.instrument configuration variable must be set to extrae
before running the application.

By default, the runtime will generate a trace as if EXTRAE_ON was set to 1. In addition, the EXTRAE_CONFIG_FILE
environment variable can be set to an Extrae configuration file for fine tuning, for instance, to enable recording hardware
counters. See: the Extrae documentation.

The amount of information generated in the Extrae traces can be controlled through the instrument.extrae.
detail_level configuration option. Its value determines a level of detail that goes from 0, which is the least detailed,
up to 8. The default level is 1. Lower levels incur in less overhead and produce smaller traces. Higher levels have more
overhead, produce bigger traces, but are more precise and comtain more information. The information generated at
each level is incremental and is the following:

20 Chapter 3. Nanos6 Runtime Options

https://ovni.readthedocs.io/
https://tools.bsc.es/tools_manuals

User Guide of OmpSs-2 2023.11

Level 0
Basic level

Includes basic information about the runtime state and the execution of tasks.

Counters about the number of tasks in the system are approximate and are sampled at periodic intervals.

Level 1
Default level

Counters about the number of tasks in the system are precise in terms of time and value.

Adds communication records that link the point of instantiation of a task to the point where they start their
execution.

Adds communication records that link the point where a task get blocked to the point where a task unblocks it
(makes it ready), and from that point to the point where the task actually resumes its execution.

Adds communication records that show task dependency relations. The set of predecessors a task that is shown
is limited to the set of tasks that have not finished their execution once said task has been instantiated. The links
go from the end of the execution of a predecessor to the start of the execution of the successor.

Levels 2 to 7
Unused

Currently they do not add further information.

Level 8
Very detailed level

Adds communication records that link the end of the execution of a task to the point where its parent returns from
a taskwait. The trace only contains links for the tasks that have not finished once their parent enters the taskwait.
This information is only available at level 8, since it may make the trace significantly bigger.

The runtime installation contains a set of already made Paraver configuration files at the following subdirectory:

$INSTALLATION_PREFIX/share/doc/nanos6/paraver-cfg/nanos6

Support for hardware counters is enabled through file specified in the EXTRAE_CONFIG_FILE environment variable.
The procedure is explained in the Extrae documentation. However, the instrument.extrae.as_threads configura-
tion variable must also be set to true. This is a temporary measure that is needed to produce correct hardware counter
information. The resulting trace will expose the actual runtime threads, as opposed to the CPU view that is generated
by default.

3.10.4 Generating CTF traces

The CTF instrumentation backend is a performance evaluation and debugging tool aimed for Nanos6 users and de-
velopers alike. Its purpose is to record the most relevant information of a Nanos6 execution efficiently and to provide
means for visually inspecting it offline. The Nanos6 CTF backend is simple (no installation prerequisites) and mostly
lock-free (see the section “Implementation details” for more information).

Nanos6 stores traces in the Common Trace Format (CTF). CTF traces can be directly visualized with tools such as
babeltrace1 or babeltrace2 (raw command line inspector). But it is recommended first to convert them to Paraver
traces using the provided ctf2prv command. Although Nanos6 requires no special packages to write CTF traces, the
ctf2prv converter needs python3 and the babeltrace2 python bindings.

The Nanos6 CTF backend will transparently collect hardware counters information if the Nanos6 Hardware counters
infrastructure has been enabled. See the User Guide for more information on how to enable hardware counters.

This backend objective is not to replace Extrae, but to provide a minimum set of features for easy Nanos6 introspection.
More sophisticated analysis (such as task dependency graphs) will have to be performed with Extrae as usual.

3.10. Benchmarking, instrumenting and debugging 21

https://tools.bsc.es/tools_manuals

User Guide of OmpSs-2 2023.11

Implementation details

Nanos6 keeps a per-core buffer to store CTF events before flushing them to the storage device. Therefore, events
generated by Nanos6 Worker threads do not require to take a look. However, events triggered by a thread not directly
controlled by Nanos6 share a buffer, and it is necessary to take a lock.

When a buffer is full, it is needed to flush it to the storage device. Flushing is done synchronously (i.e. a worker thread
that generates a tracepoint will have to flush the buffer if there no free space left) and it might affect the execution
workflow. Flushing operations are also recorded and can be inspected with the “CTF flush buffers to disk” view.

Traces are written by default under the TMPDIR environment variable or under /tmp if not set. Traces written to /tmp
are kept in RAM memory (see tmpfs for more information) and flushing translates to a memory copy operation. When
an application execution finishes, Nanos6 copies the trace to the current directory. The configuration file provides an
option instrument.ctf.tmpdir to override the default location.

Usage

To generate a CTF trace, run the application with the version.instrument configuration variable set to ctf.

This will create a trace-<app_name>-<app_pid> folder in the current directory, hereinafter refered to as $TRACE
for convinience. The subdirectory $TRACE/ctf contains the ctf trace as recorded by Nanos6.

By default, Nanos6 will convert the trace automatically at the end of the execution unless the user explicitly sets the
configuration variable instrument.ctf.conversor.enabled = false. The converted Paraver trace will be stored
under the $TRACE/prv subdirectory. The environment variable CTF2PRV_TIMEOUT=<minutes> can be set to stop the
conversion after the specified elapsed time in minutes. Please note that the conversion tool requires python3 and the
babeltrace2 package.

Additionally, there is command to manually convert a trace:

$ ctf2prv $TRACE

which will generate the directory $TRACE/prv with the Paraver trace.

Linux Kernel tracing

The requirements for tracing kernel events are: - Linux Kernel >= 4.1.0 - Set /proc/sys/kernel/perf_event_paranoid
to -1 - Grant the current user read permissions for /sys/kernel/debug/tracing or /sys/kernel/tracing (tracefs standard
mountpoints)

The Linux Kernel provides a set of events (also named tracepoints). To enable kernel events tracing in Nanos6, the user
needs to specify which events wants to collect through the nanos6 configuration file. The option instrument.ctf.
events.kernel.presets allows to speciy a list of presets that ease selecting events for supported Paraver views.
For instance, try to set instrument.ctf.events.kernel.presets=[preemption] to enable preemption-related
events.

Please check the Paraver views description below for the list of presets that each view requries.

If the user does not want to enable some of the events defined in a preset, it can blacklist them in the instrument.
ctf.events.kernel.exclude list.

Additionally, the user can provide a file path in instrument.ctf.events.kernel.file with a list of raw kernel
events to enable. An example file named kernel_events.conf follows.

$ cat kernel_events.conf
sched_switch
sys_enter_open

(continues on next page)

22 Chapter 3. Nanos6 Runtime Options

User Guide of OmpSs-2 2023.11

(continued from previous page)

sys_exit_open
mm_page_alloc # comented lines are not enabled

A list of events that your system supports can be obtained with the command:

$ perf list tracepoint | grep Tracepoint | awk '{sub(/.*:/,"",$1); print $1}'

Or by inspecting the contents of tracefs, usually mounted by default at /sys/kernel/tracing/events or /sys/
kernel/debug/tracing/events. Also, Nanos6 creates the file $TRACE/nanos6_kerneldefs.json which con-
tains a human-readable format definition of all supported system events. Unfortunately, there is no official Linux
description of each event at the moment; please check the Linux Kernel source code for a definition of the events you
are interested into.

If too many events are enabled, tracing might fail due to reaching the limit of open files in the system (one file descriptor
is opened per event and core). In that case, please, increase the open file limit, reduce the number of events and/or the
number of cores.

The CTF kernel trace is stored under $TRACE/ctf/kernel whilst the Nanos6 internal events trace are stored in
$TRACE/ctf/ust. Nanos6 will convert the generated CTF kernel trace (both user and kernel) into Paraver at the
end of the execution, as usual.

Paraver views

A number of Paraver views are provided with each Nanos6 distribution under the directory:

$INSTALLATION_PREFIX/share/doc/nanos6/paraver-cfg/ctf2prv

Some views refer to “Nanos6 core code”. This encompasses all code that it is not strictly user-written code (task code).
This includes, for instance, the worker thread main loop (where tasks are requested constantly) the Nanos6 initialization
code or the shutdown code.

The Paraver minimum resolution is 1 pixel. Hence, if the current zoom level is not close enough, multiple events
might fall into the same pixel. In this situation, Paraver must choose which of these events must be colored. Several
visualization options to tackle this problem can be found under the “Drawmode” option in the context menu (right
mouse click on a Paraver view). By default, most views have the “Random” mode, which means that drawn events are
selected randomly. This is useful to avoid giving priority to an event or another, but the Paraver user must be aware
that when zooming in (or out) events might seem to “move” due to another set of events being selected randomly after
zooming. In the particular case of graphs (such as the “Number of” views), the Drawmode “Maximum” option must
be selected if searching for maximum peaks, otherwise the event with the maximum value might not be selected to be
drawn and the peak might remain hidden. Similarly, “Minimum” must be selected if searching for minimum peaks.

Please, note that some views might complain about missing events when opened in Paraver. It is likely that the missing
event is “Runtime: Busy Waiting” as it is only generated when running Nanos6 under the busy policy. You can safely
ignore the message. If unsure, you can try disabling the “Runtime: Busy Waiting” in your view, save the cfg, and reload
the cfg again.

Do not use the Extrae cfg’s views as some event identifiers are not compatible.

Tasks
Shows the name (label) of tasks executed in each core.

Tasks and runtime
Shows the name (label) of tasks executed in each core. It also displays the time spent on Nanos6 Runtime (shown
as “Runtime”) and threads busy waiting (shown as “busy wait”) while waiting for ready tasks to execute.

3.10. Benchmarking, instrumenting and debugging 23

User Guide of OmpSs-2 2023.11

Task source code
Shows the source code location of tasks executed in each core. It also displays the time spent on Nanos6 Runtime
(shown as “Runtime”) and threads busy waiting (shown as “busy wait”) while waiting for ready tasks to execute.

Hardware counters
Shows the collected hardware counters (HWC) information. Please note that you must enable HWC collection
in Nanos6 first. See the User Guide for more details.

The HWC information is collected per each task burst (a task executing without interruption such as blocking)
and per also inside Nanos6 core code. By default, it displays PAPI_TOT_INS. Each HWC is displayed as a
different Extrae Event. If you want to inspect another counter, please, modify the “Value to display” subview of
the “Hardware counters” view to display the appropriate Extrae Event (HWC event) under Paraver’s “Filter ->
Events -> Event Type -> Types” menu.

Task id
Shows the unique id of the tasks executed in each core.

The default colouring of this view is “Not Null Gradient Color”, which eases identifying the execution progress of
tasks as they were created. The id’s 0, 1, 2 and 3 are reserved for Idle, Runtime, Busy Wait and Task, respectively.
Hence, it might be interesting to manually set the Paraver’s “Semantic Minimum” value to 4, which will not
include these values for the gradient colouring. This is the value by default, but if you perform a semantic
adjustment, you will need to change the “Semantic Minimum” manually again.

It might also be interesting to draw this view as “Code Color” which will make it easier to spot different consec-
utive tasks. Under this colouring scheme, it is easier to see the time spent running Nanos6 core code shown as
“Runtime” and when threads perform a “busy wait” while waiting for more tasks to execute.

Thread id
Shows the thread Id (TID) of the thread that was running in each core. Be aware that this view only shows the
thread placement according to Nanos6 perspective, not the OS perspective. This means that even if this view
shows a thread running uninterruptedly in a core for a long time, the system might have preempted the Nanos6
thread by another system thread a number of times without this being displayed in the view.

Runtime status simple
Shows the a simplified view of the runtime states. It displays the time spent running Nanos6 core code shown as
“Runtime”, when threads perform a “busy wait” while waiting for more tasks to execute and when the runtime
is running task’s code shown as “Task”.

Runtime subsystems
Shows the activity of the most interesting Nanos6 subsystems. In essence, a coarse-grained classification of
the time spent while running Nanos6 core code. The displayed subsystems include: Task creation/initialization,
dependency registration/unregistration, scheduling add/get tasks and polling services.

Number of blocked tasks
Shows a graph of tasks in the blocked state. Blocked tasks are tasks that started running at some point and then
stopped running before completing. This might block, for instance, due to a taskwait directive.

You might want to change paraver’s “Drawmode” option to “Maximum” or “Minimum” if searching for maxi-
mum or minimum peaks. By default, it is set to “Maximum”, which means that minimum peaks might be hidden
if the view is too much zoomed out.

Number of running tasks
Shows a graph of tasks being executed by some worker thread.

Number of created tasks
Shows a graph with the count of total created tasks. A task is created when its Nanos6 data structures are allocated
and registered within the Nanos6 core.

Number of created workers
Shows a graph of created worker threads by Nanos6. Once a worker thread is created, it is not destroyed until

24 Chapter 3. Nanos6 Runtime Options

User Guide of OmpSs-2 2023.11

the end of the application’s execution.

Number of running workers
Shows a graph of Nanos6 worker threads that are allowed to run on a core. Please note that even if Nanos6 allows
a worker to run, another system thread might have temporarily preempted that worker. System preemptions are
not displayed in this view.

Number of blocked workers
Shows a graph of worker threads that are blocked (no longer running), either because they are idle or because
they are waiting for some event. This view only counts workers that blocked due to Nanos6 will. If a worker that
is running a task blocks because of a blocking operation performed by the task code (hence, outside the scope of
Nanos6) it will not be shown in this view.

CTF flush buffers to disk
Eventually, the Nanos6 buffers that hold the events are filled and need to be flushed to disk. When this happens,
the application’s execution might be altered because of the introduced overhead. This flushing can occur in a
number of places within the Nanos6 core, either because the buffers were completely full or because Nanos6
decided to flush them before reaching that limit.

This view shows exactly when the flushing happened. If attempting to write the event A into the Nanos6 event
buffer triggers a flush, the produced Nanos6 trace will first show the event that triggered the flush followed by
the flushing events.

Paraver views for kernel events

All the views listed below require Linux Kernel events. Please, check the section “Linux Kernel tracing” for more
details.

The Paraver views that depend on kernel events can be found under:

$INSTALLATION_PREFIX/share/doc/nanos6/paraver-cfg/nanos6/ctf2prv/kernel

Kernel preemptions
Uses Linux Kernel events to show preemptions affecting the cores where the traced application runs. Preemptions
include interruptions and both user and kernel threads. Interrupts will be shown as “IRQ” and “Soft IRQ”. IRQs
are run in interrupt context. Soft IRQs are deferred interrupt work that run out of interrupt context.

This view requires the Linux Kernel preemption preset (interrupts and threads) or the context_switch preset
(only threads). If using the context_switch preset, Paraver might warn about not finding interrupt events, but
it is safe to inspect the view.

Kernel thread ids
Uses Linux Kernel events to show the Thread id (TID) of the running thread in each core used by Nanos6. This
view requires the Linux Kernel context_switch preset.

Kernel system calls
Uses Linux Kernel events to show the system calls performed by each thread on cores used by Nanos6. In this
view, all threads but the traced application will be displayed as “Other threads” to enhance the readability of
system calls.

This view requires the Linux Kernel syscall preset to trace all system calls. If the user only wants to trace a set
of syscalls, it can instead specify the context_switch preset and provide a list of system call events manually
using the instrument.ctf.events.kernel.file option in the Nanos6 configuration file.

3.10. Benchmarking, instrumenting and debugging 25

User Guide of OmpSs-2 2023.11

3.10.5 Verbose instrumentation

To enable verbose logging, run the application with the version.instrument configuration variable set to verbose.

By default it generates a lot of information. This is controlled by the instrument.verbose.areas configuration
variable, which can contain a list of areas. The areas are the following:

AddTask
Task creation.

Blocking
Blocking and unblocking within a task through calls to the blocking API.

ComputePlaceManagement
Starting and stopping compute places (CPUs, GPUs, etc).

DependenciesByAccess
Dependencies by their accesses.

DependenciesByAccessLinks
Dependencies by the links between the accesses to the same data.

DependenciesByGroup
Dependencies by groups of tasks that determine common predecessors and common successors.

LeaderThread
Execution of the leader thread.

LoggingMessages
Additional logging messages.

TaskExecution
Task execution.

TaskStatus
Task status transitions.

TaskWait
Entering and exiting taskwaits.

ThreadManagement
Thread creation, activation and suspension.

UserMutex
User-side mutexes (critical).

The case is ignored, and the all keyword enables all of them. Additionally, an area can have the ! prepended to it to
disable it. For instance, areas = ["AddTask", "TaskExecution" , "TaskWait"] is a good starting point.

The default value is:

[instrument]
[instrument.verbose]

areas = ["all", "!ComputePlaceManagement", "!DependenciesByAccess", "!
→˓DependenciesByAccessLinks",

"!DependenciesByGroup", "!LeaderThread", "!TaskStatus", "!ThreadManagement"]

By default, events are recorded with their timestamp and ordered accordingly. This can be disabled by setting the
instrument.verbose.timestamps configuration variable to false.

The output is emitted by default to standard error, but it can be sent to a file by specifying it through the instrument.
verbose.output_file option. Also the instrument.verbose.dump_only_on_exit can be set to true to delay
the output to the end of the program to avoid getting it mixed with the output of the program.

26 Chapter 3. Nanos6 Runtime Options

User Guide of OmpSs-2 2023.11

3.10.6 Debugging

By default, the runtime is optimized for speed and will assume that the application code is correct. Hence, it will not
perform most validity checks. To enable validity checks, run the application with the version.debug configuration
variable set to true. This will enable many internal validity checks that may be violated when the application code is
incorrect.

To debug an application with a regular debugger, please compile its code with the regular debugging flags and also the
-keep flag (Mercurium). This flag forces Mercurium to dump the transformed code in the local file system, so that it
is available for the debugger.

The runtime system has a component named “loader” that is the responsible for selecting a runtime variant that meets
the requirements set by the user though the configuration variables. The loader is also responsible for calling some
functions that initialize the runtime variant and convert the main function into a regular task. To debug problems due
to the installation, run the application with the loader.verbose configuration variable set to true.

3.10.7 Runtime loader verbosity

The loader.verbose configuration option controls the verbosity of the Nanos6 loader. By default (false value), it
is quiet. If the configuration variable has value true it will emit to standard error the actions that it takes and their
outcome.

By default, the loader will attempt to load the actual runtime library from the path determined by the operating system
(taking into account the rpath and the LD_LIBRARY_PATH environment variable). If it fails to load the library, then it
will attempt to locate the library at the same location as the Nanos6 loader.

The default search path can be overriden through the loader.library_path configuration variable. If it exists the
first attempt at loading the runtime will be performed at the directory specified in that variable. The loader does not
accept multiple directories in that variable.

The Nanos6 loader resolves the addresses of the API functions to the actual runtime implementation. In addition, it also
checks for the implementation of some features, and if they are not found, it will either complain or emit a warning and
fall back to a compatible but less powerful implementation. More specifically, the loader accepts running applications
that make use of weak dependencies and will fall back to strong dependencies if the runtime does not have support for
them.

3.10.8 Reporting runtime information

Information about the runtime may be obtained by running the application with the loader.report_prefix config-
uration variable, or by invoking the following command:

$ nanos6-info --runtime-details
Runtime path /opt/nanos6/lib/libnanos6-optimized.so.0.0.0
Runtime Version 2017-11-07 09:26:03 +0100 5cb1900
Runtime Branch master
Runtime Compiler Version g++ (Debian 7.2.0-12) 7.2.1 20171025
Runtime Compiler Flags -DNDEBUG -Wall -Wextra -Wdisabled-optimization -Wshadow -
→˓fvisibility=hidden -O3 -flto
Initial CPU List 0-3
NUMA Node 0 CPU List 0-3
Scheduler priority
Dependency Implementation regions (linear-regions-fragmented)
Threading Model pthreads

3.10. Benchmarking, instrumenting and debugging 27

User Guide of OmpSs-2 2023.11

The loader.report_prefix configuration variable may be defined as an empty string or it may contain a string
that will be prepended to each line. For instance, it can contain a sequence that starts a comment in the output of the
program. Example:

$ NANOS6_CONFIG_OVERRIDE="loader.report_prefix=#" ./app
Some application output ...
string version 2017-11-07 09:26:03 +0100 5cb1900 Runtime Version
string branch master Runtime Branch
string compiler_version g++ (Debian 7.2.0-12) 7.2.1 20171025 Runtime␣
→˓Compiler Version
string compiler_flags -DNDEBUG -Wall -Wextra -Wdisabled-optimization -Wshadow -
→˓fvisibility=hidden -O3 -flto Runtime Compiler Flags
string initial_cpu_list 0-3 Initial CPU List
string numa_node_0_cpu_list 0-3 NUMA Node 0 CPU List
string scheduler priority Scheduler
string dependency_implementation regions (linear-regions-fragmented) ␣
→˓Dependency Implementation
string threading_model pthreads Threading Model

3.11 Throttle

There are some cases where user programs are designed to run for a very long time, instantiating in the order of tens
of millions of tasks or more. These programs can demand a huge amount of memory in small intervals when they
rely only on data dependencies to achieve task synchronization. In these cases, the runtime system could run out of
memory when allocating internal structures for task-related information if the number of instantiated tasks is not kept
under control.

To prevent this issue, the runtime system offers a throttle mechanism that monitors memory usage and stops task creators
while there is high memory pressure. This mechanism does not incur too much overhead because the stopped threads
execute other ready tasks (already instantiated) until the memory pressure decreases. The main idea of this mechanism
is to prevent the runtime system from exceeding the memory budget during execution. Furthermore, the execution time
when enabling this feature should be similar to the time in a system with infinite memory.

The throttle mechanism requires a valid installation of Jemalloc, which is a scalable multi-threading memory allocator.
Hence, the runtime system must be configured with the --with-jemalloc option. Although the throttle feature is
disabled by default, it can be enabled and tunned at runtime through the following configuration variables:

throttle.enabled (default: false)
Boolean variable that enables the throttle mechanism.

throttle.tasks (default: 5.000.000)
Maximum absolute number of alive childs that any task can have. It is divided by 10 at each nesting level.

throttle.pressure (default: 70)
Percentage of memory budget used at which point the number of tasks allowed to exist will be decreased linearly
until reaching 1 at 100% memory pressure.

throttle.max_memory (default: available physical memory / 2)
Maximum used memory or memory budget. Note that this variable can be set in terms of bytes or in memory
units. For example: throttle.max_memory=50GB.

28 Chapter 3. Nanos6 Runtime Options

User Guide of OmpSs-2 2023.11

3.12 Hardware counters

Nanos6 offers an infrastructure to obtain hardware counter statistics of tasks with various backends. The usage of
this API is controlled through the Nanos6 configuration file. Currently, Nanos6 supports the PAPI, RAPL and PQoS
backends. All the available hardware counter backends are listed in the default configuration file, found in the scripts
folder. To enable any of these, modify the false fields and change them to true. Specific counters can be enabled or
disabled by adding or removing their name from the list of counters inside each backend subsection.

Next we showcase a simplified version of the hardware counter section of the configuration file, where the PAPI backend
is enabled with counters that monitor the total number of instructions and cycles, and the PAPI backend is enabled as
well:

[hardware_counters]
[hardware_counters.papi]

enabled = true
counters = ["PAPI_TOT_INS", "PAPI_TOT_CYC"]

[hardware_counters.rapl]
enabled = true

3.13 OmpSs-2@Cluster

In order to enable OmpSs-2@Cluster support, you need a working MPI installation in your environment that supports
multithreading, i.e. MPI_THREAD_MULTIPLE. Nanos6 needs to be configured with the --enable-cluster flag.

For more information on how to write and run cluster applications see Cluster.md.

3.12. Hardware counters 29

https://github.com/bsc-pm/nanos6/blob/master/docs/cluster/Cluster.md

User Guide of OmpSs-2 2023.11

30 Chapter 3. Nanos6 Runtime Options

CHAPTER

FOUR

NODES RUNTIME OPTIONS

This section describes how to run OmpSs-2 applications using NODES, and which runtime options are available.

4.1 Executing and controlling number of CPUs

NODES applications can be compiled and executed in this way:

Compile OmpSs-2 program with LLVM/Clang
$ clang -fompss-2=libnodes app.c -o app

Execute on all available cores of the current session
$./app

The number of cores that are used is controlled by running the application through the taskset command. For instance:

Execute on cores 0, 1, 2 and 4
$ taskset -c 0-2,4 ./app

4.2 Debugging

By default, NODES is optimized to execute applications as efficiently as possible in terms of performance, and will
assume that the application code is correct. Thus, it will not perform most runtime validity checks. To enable validity
checks, users must compile NODES enabling debug options, by passing the --enable-debug flag at configure time.
This will enable many internal validity checks that may be violated when the application code is incorrect.

To debug an application with a regular debugger, please compile its code with the regular debugging flags.

4.3 Generating ovni traces

NODES can generate execution traces with the ovni library, which generates lightweight binary traces, and it is possible
to mix ovni-instrumented libraries together with an OmpSs-2 program and obtain a single coherent trace.

To enable the generation of ovni traces, NODES must be configured with the --with-ovni option. Once NODES has
been built with ovni support, it is up to the user to enable it, as it is disabled by default. To enable ovni instrumentation,
the NODES_OVNI environment variable must be set as follows: export NODES_OVNI=1.

The trace will be left in the ovni/ directory, which can be transformed into a Paraver trace with the ovniemu utility.
The Paraver configuration files (views) can be found in the ovni/cfg directory.

31

User Guide of OmpSs-2 2023.11

See the ovni documentation for more details.

32 Chapter 4. NODES Runtime Options

https://ovni.readthedocs.io/

CHAPTER

FIVE

NOS-V LIBRARY

This section describes how to use and configure the nOS-V library.

5.1 Linking with nOS-V

nOS-V applications can be linked by leveraging the -lnosv linker flag. The API is available in the nosv.h header.

5.2 Runtime configuration

nOS-V comes with an extensive list of tuning, configuration and customization features. The main way to change this
configuration is through the use of the nosv.toml configuration file. When a nOS-V program calls nosv_init(),
the library will search in the following order for a suitable configuration file:

1. The file specified through the NOSV_CONFIG environment variable

2. A file named nosv.toml in the current directory

3. The default configuration file, located in the installation directory

After the configuration file has loaded, the override configuration is parsed, which is a set of comma-separated TOML-
like variables specified in the NOSV_CONFIG_OVERRIDE environment variable. This is an example using the override
mechanism to change some configurations:

$ export NOSV_CONFIG_OVERRIDE="shared_memory.name=example,turbo.enabled=true"
$./nos-v-application

Configurations are described in the default nosv.toml file, which is reproduced here:

Default nOS-V configuration file.
Note that every process in the same nOS-V instance should load an identical␣
→˓configuration file,
otherwise, the behaviour is unspecified

Shared memory configuration
[shared_memory]

Name of the shared memory section. This variable acts as an "id" for each nOS-V␣
→˓instance

Two applications with the same shared memory name will share a nOS-V instance,␣
→˓while different names

will result in independent nOS-V instances. Note that both the name of the shared␣
(continues on next page)

33

User Guide of OmpSs-2 2023.11

(continued from previous page)

→˓memory as well as the
isolation level have to match for nOS-V instances to connect
name = "nosv"
Isolation level of nOS-V. Possible values are:
"process" - Each process has a separate nOS-V instance
"user" - nOS-V instances are shared for the same user
"group" - nOS-V instances are shared for the same group
"public" - nOS-V instances are shared for the whole system
isolation_level = "user"
Size of the shared memory section. Choose powers of two
size = "2G"
Start of the shared memory mapping
This option should be memory address codified in hexadecimal (start with 0x)
start = 0x0000200000000000

Scheduler configuration
These parameters allow to fine tune the scheduler's behaviour
[scheduler]

Number of logical CPUs mapped to a single scheduler SPSC for ready tasks
Minimum is 1, there is no maximum. Try to choose numbers that divide evenly the␣

→˓number
of CPUs in the system.
A lower number will yield more scheduling throughput and is adequate when using
multiple task creator processes.
A higher number will yield lower scheduling latency and is adequate when using␣

→˓one or few
task creator processes
cpus_per_queue = 1
Number of tasks that are grabbed off of a queue when processing ready tasks.
Lowering the number may be better if there are very few ready tasks during␣

→˓execution.
Increasing the batch may help if your CPU has bad single-thread performance.
In general, the default value of 64 should result in a good trade-off
queue_batch = 64
Scheduler quantum in ns. This is a guideline for how long should we execute one␣

→˓process' tasks
until we have to switch to the next one. However, as nOS-V tasks are not␣

→˓preemptable, it isn't enforced.
This parameter is specially relevant for the nosv_schedpoint function, which will␣

→˓try to schedule
each quantum ns.
A lower value will cause more inter-process context switches but may provide more␣

→˓uniform progress,
while a higher value will minimize context switches but may stall applications␣

→˓for longer
quantum_ns = 20000000 # nanoseconds
Size of the queues that are used to place tasks into the scheduler
A good value should be a multiple of queue_batch
in_queue_size = 256
Enable the immediate successor policy, which controls wether nOS-V honors the␣

→˓NOSV_SUBMIT_IMMEDIATE
to execute a task immediately after the current one

(continues on next page)

34 Chapter 5. nOS-V Library

User Guide of OmpSs-2 2023.11

(continued from previous page)

immediate_successor = true

CPU Governor configuration
Controls the policy that nOS-V follows to block idle CPUs to save energy and resources
[governor]

There is a choice between three different governor policies:
- hybrid: CPUs will spin for governor.spins before going to sleep when no work is␣

→˓available
- idle: CPUs will sleep immediately when no work is available
- busy: CPUs will never sleep
In general, use idle when targeting minimum power usage, and busy when targeting␣

→˓maximum performance
The default is hybrid as it provides a good balance between power and performance.
policy = "hybrid"
Number of times a CPU will spin without sleeping in the "hybrid" policy.
When "idle" or "busy" are selected, this setting is ignored
spins = 10000

CPU Manager
[cpumanager]

CPU binding for the execution. The valid values are "inherit" which inherits the␣
→˓cpu mask of the

first process that initializes the runtime, or a CPU mask in hexadecimal with the␣
→˓format "0xFFFF"

binding = "inherit"

Affinity
[affinity]

Default affinity for all created tasks. This will be the default value for nosv␣
→˓task affinity in the

current process. This setting is normally used in conjunction with "binding" and␣
→˓makes it possible to

easily combine multiple processes in the same nOS-V instance.
Values can be: "all" or "cpu-X", "numa-X", "complex-X" where "X" is the physical␣

→˓index of the resource.
For example, "numa-1" will set affinity of all tasks to the NUMA Node 1.
default = "all"
Default affinity policy, either "strict" or "preferred". When the default␣

→˓affinity is "all", this value
is not used.
default_policy = "strict"
It is also possible to define the composition of the NUMA Nodes, which will␣

→˓override the autodiscovered
composition that nOS-V can do through libnuma.
It should be deffined as a 2-dimensional array, which has one row per NUMA node,␣

→˓and each column is one
core that belongs to that NUMA Node. Use the system ids for the cores. Consider␣

→˓the following example
in a system with 2 NUMA Nodes, each one with 4 cores:
numa_nodes = [[0, 1, 2, 3], [4, 5, 6, 7]]

(continues on next page)

5.2. Runtime configuration 35

User Guide of OmpSs-2 2023.11

(continued from previous page)

Debug options
[debug]

Dump all the configuration options nOS-V is running with, its final parsed values␣
→˓and the

path of the config file being used
dump_config = false

Hardware Counters configuration
[hwcounters]

Whether to print verbose information if a backend is enabled
verbose = false
The enabled HWCounter backends. Possible options: "papi", "none"
backend = "none"
The list of PAPI counters to read. By default only "PAPI_TOT_INS" and "PAPI_TOT_

→˓CYC"
papi_events = [

"PAPI_TOT_INS",
"PAPI_TOT_CYC"

]

Enabling turbo will cause nOS-V to set architecture-specific optimization flags on␣
→˓every created
or attached threads. In x86, this will cause the FTZ and DAZ flags of the SSE FPU to␣
→˓be enabled,
causing a significant performance increase in floating-point applications, but␣
→˓disabling IEEE-754
compatibility.
[turbo]

enabled = false

Monitoring cappabilities and configuration.
[monitoring]

enabled = false
Whether to print verbose information if monitoring is enabled
verbose = false

Instrumentation. Only applies if nOS-V was configured with --with-ovni
[instrumentation]

Select the instrumentation to be used. Current options are "none" or "ovni".
version = "none"

5.3 Debugging

Although nOS-V APIs have error checking, it may be useful to build the library with debug symbols enabled in order
to pinpoint bugs and issues. To do so, you can use the --enable-debug flag at configure time.

Furthermore, it is also possible to build nOS-V with Address Sanitizer enabled. In this mode, the runtime will assist
ASAN by poisoning areas of the shared memory when they are not in use, which may be useful to find memory bugs
in user programs that end up corrupting nOS-V memory. To enable ASAN mode, you can use the --enable-asan
flag at configure time.

36 Chapter 5. nOS-V Library

User Guide of OmpSs-2 2023.11

5.4 Generating ovni traces

nOS-V can generate execution traces with the ovni library, which generates lightweight binary traces. Traces can then
be transformed into a Paraver trace. It is worth noting that multiple nOS-V programs running in the same or different
instances can be combined to create a coherent system-wide trace.

To enable the generation of ovni traces, nOS-V must be configured with the --with-ovni option. Once nOS-V has
been built with ovni support, it is up to the user to enable it, as it is disabled by default. To enable ovni instrumentation
a user must set the instrumentation.version configuration option to ovni.

The trace will be left in the ovni/ directory, which can be transformed into a Paraver trace with the ovniemu utility.
The Paraver configuration files (views) can be found in the ovni/cfg directory.

See the ovni documentation for more details.

5.4. Generating ovni traces 37

https://ovni.readthedocs.io/

User Guide of OmpSs-2 2023.11

38 Chapter 5. nOS-V Library

CHAPTER

SIX

MERCURIUM LEGACY COMPILER OPTIONS

Important: Mercurium is the OmpSs-2 legacy compiler and is unsupported now. We recommend to use the LLVM-
based compiler instead. Check LLVM-based compiler.

This section describes how to use the legacy Mercurium compiler to compile OmpSs-2 programs.

6.1 Mercurium drivers

The list of available drivers can be found here: https://github.com/bsc-pm/mcxx/blob/master/doc/md_pages/profiles.
md

6.2 Common compilation flags

Usual flags like -O, -O1, -O2, -O3, -D, -c, -o, . . . are recognized by Mercurium.

Almost every Mercurium-specific flag is of the form --xxx.

Mercurium drivers are deliberately compatible with gcc. This means that flags of the form -fXXX, -mXXX and -Wxxx
are accepted and passed onto the backend compiler without interpretation by Mercurium drivers.

Warning: In GCC a flag of the form -fXXX is equivalent to a flag of the form --XXX. This is not the case in
Mercurium.

6.2.1 Getting command line help

You can get a summary of all the flags accepted by Mercurium using --help with any of the drivers:

$ mcc --help
Usage: mcc options file [file..]
Options:
-h, --help Shows this help and quits
--version Shows version and quits
--v, --verbose Runs verbosely, displaying the programs

invoked by the compiler
...

39

https://github.com/bsc-pm/mcxx/blob/master/doc/md_pages/profiles.md
https://github.com/bsc-pm/mcxx/blob/master/doc/md_pages/profiles.md

User Guide of OmpSs-2 2023.11

6.2.2 Passing vendor-specific flags

While almost every gcc of the form -fXXX or -mXXX can be passed directly to a Mercurium driver, some other vendor-
specific flags may not be well known or be misunderstood by Mercurium. When this happens, Mercurium has a generic
way to pass parameters to the backend compiler and linker.

--Wn,<comma-separated-list-of-flags>
Passes comma-separated flags to the native compiler. These flags are used when Mercurium invokes the backend
compiler to generate the object file (.o)

--Wl,<comma-separated-list-of-flags>
Passes comma-separated-flags to the linker. These flags are used when Mercurium invokes the linker

--Wp,<comma-separated-list-of-flags>
Passes comma-separated flags to the C/Fortran preprocessor. These flags are used when Mercurium invokes the
preprocessor on a C or Fortran file.

These flags can be combined. Flags --Wp,a --Wp,b are equivalent to --Wp,a,b. Flag --Wnp,a is equivalent to
--Wn,a --Wp,a

Important: Do not confuse --Wl and --Wp with the gcc similar flags -Wl and -Wp (note that gcc ones have a single
-). The latter can be used with the former, as in --Wl,-Wl,muldefs. That said, Mercurium supports -Wl and -Wp
directly, so -Wl,muldefs should be enough.

6.3 Compile OmpSs-2 programs

For OmpSs-2 programs that run in SMP or NUMA systems, you do not have to do anything. Just pick one of the drivers
above.

Following is a very simple OmpSs-2 program in C:

/* test.c */
#include <stdio.h>

int main(int argc, char *argv[])
{
int x = argc;
#pragma oss task inout(x)
{
x++;

}
#pragma oss task in(x)
{
printf("argc + 1 == %d\n", x);

}
#pragma oss taskwait
return 0;

}

Compile it using mcc:

$ mcc -o test --ompss-2 test.c

40 Chapter 6. Mercurium Legacy Compiler Options

User Guide of OmpSs-2 2023.11

Important: Do not forget the flag --ompss-2 otherwise your program will be compiled without parallel support.

And run it:

$./test
argc + 1 == 2

6.3.1 Compile OpenMP programs with OmpSs-2 support

By passing the --openmp-compatibility flag, Mercurium will support some constructs of OpenMP (e.g. taskloop,
parallel for, etc.).

Warning: Experimental flag. There are no guarantees the generated code behaves as the OpenMP program.

6.4 Problems during compilation

While we put big efforts to make a reasonably robust compiler, you may encounter a bug or problem with Mercurium.

There are several errors of different nature that you may run into:

• Mercurium ends abnormally with an internal error telling you to open a ticket.

• Mercurium does not crash but gives an error on your input code and compilation stops, as if your code were not
valid.

• Mercurium does not crash, but gives an error involving an internal-source.

• Mercurium generates wrong code and native compilation fails on an intermediate file.

• Mercurium forgets something in the generated code and linking fails.

6.4.1 How can you help us to solve the problem quicker?

In order for us to fix your problem we need the preprocessed file. If your program is C/C++ we need you to do:

1. Figure out the compilation command of the file that fails to compile. Make sure you can replicate the problem
using that compilation command alone.

2. If your compilation command includes -c, replace it by -E. If it does not include -c simply add -E.

3. If your compilation command includes -o file (or -o file.o) replace it by -o file.ii. If it does not
include -o, simply add -o file.ii.

4. Now run the compiler with this modified compilation command. It should have generated a file.ii.

5. These files are usually very large. Please compress them with gzip (or bzip2 or any similar tool).

Send us an email to pm-tools at bsc.es with the error message you are experiencing and the (compressed) preprocessed
file attached. If your program is Fortran just the input file may be enough, but you may have to add all the INCLUDEd
files and modules.

6.4. Problems during compilation 41

User Guide of OmpSs-2 2023.11

42 Chapter 6. Mercurium Legacy Compiler Options

INDEX

B
benchmarking

Nanos6, 20
build procedure

Nanos6, 4
NODES, 7, 9
nos-v, 10

build requirements
Nanos6, 4
NODES, 7, 8
nos-v, 9

C
clang

flags, 11
OmpSs-2, 11

clang;, 7
cluster

Nanos6, 29
compilation

problems, 41
compile

OmpSs-2, 39
CPUManager

Nanos6, 19
CTF

instrumentation, Nanos6, 21

D
debug

instrumentation, Nanos6, 27
instrumentation, NODES, 31
instrumentation, nos-v, 36

dependencies
Nanos6, 17

DLB
Nanos6, 18

drivers
Mercurium, 39

E
Extrae

instrumentation, Nanos6, 20

H
HWCounters

Nanos6, 29

I
imcc, 39
imcxx, 39
imfc, 39
installation

LLVM, 7
Nanos6, 4
NODES, 6, 8
nos-v, 9
OmpSs-2, 3
ovni, 3

installation; legacy compiler
Mercurium, 10

instrumentation
Nanos6 CTF, 21
Nanos6 debug, 27
Nanos6 Extrae, 20
Nanos6 ovni, 20
Nanos6 runtime information, 27
Nanos6 verbose, 26
NODES debug, 31
NODES ovni, 31
nos-v debug, 36
nos-v ovni, 37

L
LLVM

installation, 7
LLVM compiler

problems, 13
LLVM;, 7

M
mcc, 39
mcxx, 39
Mercurium

43

User Guide of OmpSs-2 2023.11

common flags, 39
drivers, 39
help, 39
installation; legacy compiler, 10
vendor-specific flags, 39

mfc, 39

N
Nanos6

benchmarking, 20
build procedure, 4
build requirements, 4
cluster, 29
CPUManager, 19
CTF instrumentation, 21
debug instrumentation, 27
dependencies, 17
DLB, 18
Extrae instrumentation, 20
HWCounters, 29
installation, 4
optional build requirements, 4
ovni instrumentation, 20
runtime information instrumentation, 27
scheduling, 18
taskfor, 18
Throttle, 28
verbose instrumentation, 26

NODES
build procedure, 7, 9
build requirements, 7, 8
debug instrumentation, 31
installation, 6, 8
optional build requirements, 7, 9
ovni instrumentation, 31

nos-v
build procedure, 10
build requirements, 9
debug instrumentation, 36
installation, 9
optional build requirements, 10
ovni instrumentation, 37
runtime library, 33

O
OmpSs-2

clang, 11
compile, 39
installation, 3
runtime system, 15, 31

optional build requirements
Nanos6, 4
NODES, 7, 9
nos-v, 10

ovni
installation, 3
instrumentation, Nanos6, 20
instrumentation, NODES, 31
instrumentation, nos-v, 37

P
problems

compilation, 41
LLVM compiler, 13

R
runtime information

instrumentation, Nanos6, 27
runtime library

nos-v, 33
runtime system

OmpSs-2, 15, 31

S
scheduling

Nanos6, 18

T
taskfor

Nanos6, 18
Throttle

Nanos6, 28

V
verbose

instrumentation, Nanos6, 26

X
xlmcc, 39
xlmcxx, 39
xlmfc, 39

44 Index

	Installation of OmpSs-2
	Installation of ovni (optional)
	Installation of Nanos6
	Build requirements
	Optional libraries and tools
	Build procedure
	Embedding software dependencies

	Installation of NODES
	Build requirements
	Optional libraries and tools
	Build procedure

	Installation of LLVM-based compiler
	Installation of NODES
	Build requirements
	Optional libraries and tools
	Build procedure

	Installation of nOS-V
	Build requirements
	Optional libraries and tools
	Build procedure

	Installation of Mercurium legacy compiler

	LLVM-based compiler
	Compiling OmpSs-2 programs using the LLVM-based compiler
	C/C++ programs
	Choosing between Nanos6 and NODES runtimes

	Problems with the LLVM-based compiler
	How can you help us to solve the problem quicker in the LLVM compiler?

	LLVM-based compiler OmpSs-2 support
	Unsupported features

	Nanos6 Runtime Options
	Executing and controlling number of CPUs
	Runtime configuration options
	Runtime variants
	Task data dependencies
	Task scheduler
	Task worksharings
	Stack size
	Dynamic Load Balancing (DLB)
	CPU manager policies
	Benchmarking, instrumenting and debugging
	Benchmarking
	Generating ovni traces
	Generating Extrae traces
	Generating CTF traces
	Implementation details
	Usage
	Linux Kernel tracing
	Paraver views
	Paraver views for kernel events

	Verbose instrumentation
	Debugging
	Runtime loader verbosity
	Reporting runtime information

	Throttle
	Hardware counters
	OmpSs-2@Cluster

	NODES Runtime Options
	Executing and controlling number of CPUs
	Debugging
	Generating ovni traces

	nOS-V Library
	Linking with nOS-V
	Runtime configuration
	Debugging
	Generating ovni traces

	Mercurium Legacy Compiler Options
	Mercurium drivers
	Common compilation flags
	Getting command line help
	Passing vendor-specific flags

	Compile OmpSs-2 programs
	Compile OpenMP programs with OmpSs-2 support

	Problems during compilation
	How can you help us to solve the problem quicker?

	Index

