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The information included in this document is provided “as is”, with no warranties whatsoever, including any warranty
of merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, speci-
fication, or sample. The document is not guaranteed to be complete and/or error-free at this stage and it is subject
to changes without furthernotice. Barcelona Supercomputing Center will not assume any responsibility for errors
or omissions in this document. Please send comments, corrections and/or suggestions to pm-tools at bsc.es. This
document is provided for informational purposes only.

Note: There is a PDF version of this document at http://pm.bsc.es/ompss-docs/spec/OmpSsSpecification.pdf
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CHAPTER
ONE

INTRODUCTION TO OMPSS

OmpSs is a programming model composed of a set of directives and library routines that can be used in conjunction
with a high level programming language in order to develop concurrent applications. This programming model is an
effort to integrate features from the StarSs programming model family, developed by the Programming Models group
of the Computer Sciences department at Barcelona Supercomputing Center (BSC), into a single programming model.

OmpSs is based on tasks and dependences. Tasks are the elementary unit of work which represents a specific instance
of an executable code. Dependences let the user annotate the data flow of the program, this way at runtime this
information can be used to determine if the parallel execution of two tasks may cause data races.

The goal of OmpSs is to provide a productive environment to develop applications for modern High-Performance
Computing (HPC) systems. Two concepts add to make OmpSs a productive programming model: performance and
ease of use. Programs developed in OmpSs must be able to deliver a reasonable performance when compared to other
programming models that target the same architectures. Ease of use is a concept difficult to quantify but OmpSs has
been designed using principles that have been praised by their effectiveness in that area.

In particular, one of our most ambitious objectives is to extend the OpenMP programming model with new directives,
clauses and API services or general features to better support asynchronous data-flow parallelism and heterogeneity
(as in GPU-like devices).

This document, except when noted, makes use of the terminology defined in the OpenMP Application Program Inter-
face version 3.0 /OPENMP30]

1.1 Reference implementation

The reference implementation of OmpSs is based on the Mercurium source-to-source compiler and the Nanos++
Runtime Library:

* The Mercurium source-to-source compiler provides the necessary support for transforming the high-level direc-
tives into a parallelized version of the application.

* The Nanos++ runtime library provides the services to manage all the parallelism in the user-application, includ-
ing task creation, synchronization and data movement, and provide support for resource heterogeneity.

1.2 A bit of history

The name OmpSs comes from the name of two other programming models, OpenMP and StarSs. The design principles
of these two programming models form the basic ideas used to conceive OmpSs.

OmpSs takes from OpenMP its philosophy of providing a way to, starting from a sequential program, produce a
parallel version of the same by introducing annotations in the source code. This annotations do not have an explicit
effect in the semantics of the program, instead, they allow the compiler to produce a parallel version of it. This
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characteristic feature allows the users to parallelize applications incrementally. Starting from the sequential version,
new directives can be added to specify the parallelism of different parts of the application. This has an important
impact on the productivity that can be achieved by this philosophy. Generally when using more explicit programming
models the applications need to be redesigned in order to implement a parallel version of the application, the user is
responsible of how the parallelism is implemented. A direct consequence of this is the fact that the maintenance effort
of the source code increases when using a explicit programming model, tasks like debugging or testing become more
complex.

StarSs, or Star SuperScalar, is a family of programming models that also offer implicit parallelism through a set of
compiler annotations. It differs from OpenMP in some important areas. StarSs uses a different execution model,
thread-pool where OpenMP implements fork-join parallelism. StarSs also includes features to target heterogeneous
architectures while OpenMP only targets shared memory systems. Finally StarSs offers asynchronous parallelism as
the main mechanism of expressing parallelism whereas OpenMP only started to implement it since its version 3.0.

StarSs raises the bar on how much implicitness is offered by the programming model. When programming using
OpenMP, the developer first has to define which regions of the program will be executed on parallel, then he or she
has to express how the inner code has to be executed by the threads forming the parallel region, and finally it may
be required to add directives to synchronize the different parts of the parallel execution. StarSs simplifies part of this
process by providing an environment where parallelism is implicitly created from the beginning of the execution, thus
the developer can omit the declaration of parallel regions. The definition of parallel code is used using the concept of
tasks, which are pieces of code which can be executed asynchronously in parallel. When it comes to synchronizing the
different parallel regions of a StarSs applications, the programming model also offers a dependency mechanism which
allows to express the correct order in which individual tasks must be executed to guarantee a proper execution. This
mechanism enables a much richer expression of parallelism by StarSs than the one achieved by OpenMP, this makes
StarSs applications to exploit the parallel resources more efficiently.

OmpSs tries to be the evolution that OpenMP needs in order to be able to target newer architectures. For this, OmpSs
takes key features from OpenMP but also new ideas that have been developed in the StarSs family of programming
models.

1.3 Influence in OpenMP

Many OmpSs and StarSs ideas have been introduced into the OpenMP programming model. The next figure summa-
rizes our contributions:

+ Task on taskwaits + Dependences

+ OMPTimpl. on taskloops

+ Prototype + Task + Taskloop + Taskreductions \! + Multidependences
of tasking dependence prototyping + Dependences + Commutative
|
|

priorities

I
0,
Nowadays '%s P

Starting from the version 3.0, released on May 2008, OpenMP included the support for asynchronous tasks. The
reference implementation, which was used to measure the benefits that tasks provided to the programming model, was
developed at BSC and consisted on the Nanos4 run-time library and the Mercurium source-to-source compiler.

Our next contribution, which was included in OpenMP 4.0 (released on July 2013), was the extension of the tasking
model to support data dependences, one of the strongest points of OmpSs that allows to define fine-grain synchroniza-
tion among tasks.

4 Chapter 1. Introduction to OmpSs
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In OpenMP 4.5, which is the newest version, the tasking model was extended with the taskloop construct. The
reference implementation of this construct was developed at BSC. Apart from that, we also contributed to this version
adding the priority clause to the task and taskloop constructs.

For the upcoming OpenMP versions, we plan to propose more tasking ideas that we already have in OmpSs like task
reductions or new extensions to the tasking dependence model.

1.4 Glossary of terms

ancestor tasks The set of tasks formed by your parent task and all of its ancestor tasks.
base language The base language is the programming language in which the program is written.
child task A task is a child of the task which encounters its task generating code.

construct A construct is an executable directive and its associated statement. Unlike the OpenMP terminology, we
will explicitly refer to the lexical scope of a constructor or the dynamic extent of a construct when needed.

data environment The data environment is formed by the set of variables associated with a given fask.
declarative directive A directive that annotates a declarative statement.
dependence Is the relationship existing between a predecessor task and one of its successor tasks.

descendant tasks The descendant tasks of a given task is the set of all its child tasks and the descendant tasks of
them.

device A device is an abstract component, including hardware and/or software elements, allowing to execute tasks.
Devices may be accessed by means of the offload technique. That means that there are tasks generated in one
device that may execute in a different device. All OmpSs programs have at least one device (i.e. the host device)
with one or more processors.

directive In C/C++ a #pragma preprocessor entity.
In Fortran a comment which follows a given syntax.

dynamic extent The dynamic extent is the interval between establishment of the execution entity and its explicit
disestablishment. Dynamic extent always obey to a stack-like discipline while running the code and it includes
any code in called routines as well as any implicit code introduced by the OmpSs implementation.

executable directive A directive that annotates an executable statement.

expression Is a combination of one or more data components and operators that the base program language may
understand.

function task In C, an task declared by a task directive at file-scope that comes before a declaration that declares
a single function or comes before a function-definition. In both cases the declarator should include a parameter
type list.

In C++, a task declared by a task directive at namespace-scope or class-scope that comes before a function-
definition or comes before a declaration or member-declaration that declares a single function.

In Fortran, a task declared by a task directive that comes before a the SUBROUT INE statement of an external-
subprogram, internal-subprogram or an interface-body.

host device The host device is the device in which the program begins its execution.
inline task In C/C++ an explicit task created by a task directive in a statement inside a function-definition.

In Fortran, an explicit task created by a task directive in the executable part of a program unit.

1.4. Glossary of terms 5
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lexical scope The lexical scope is the portion of code which is lexically (i.e. textually) contained within the estab-
lishing construct including any implicit code lexically introduced by the OmpSs implementation. The lexical
scope does not include any code in called routines.

outline tasks An outlined task is also know as a function tasks.

predecessor task A task becomes predecessor of another task(s) when there are dependence(s) between this task and
the other ones (i.e. its successor tasks. That is, there is a restriction in the order the runtime must execute them:
all predecessor tasks must complete before a successor task can be executed.

parent task The task that encountered a task generating code is the parent task of the new created task(s).

ready task pool Is the set of tasks ready to be executed (i.e. they are not blocked by any condition).

sliceable task A task that may generate other tasks in order to compute the whole computational unit.

slicer policy The slicer policy determines the way a sliceable task must be segmented.

structured block An executable statement with a single entry point (at the top) and a single exit point (at the bottom).

successor task A task becomes successor of another task(s) when there are dependence(s) between these tasks (i.e.
its predecessors tasks) and itself. That is, there is a restriction in the order the runtime must execute them: all
the predecessor task must complete before a successor task can be executed.

target device A device onto which tasks may be offloaded from the host device or other target devices. The ability
of offloading tasks from a target device onto another farget device is implementation defined.

task A task is the minimum execution entity that can be managed independently by the runtime scheduler (although
a single task may be executed at different phases according with its task switching points). Tasks in OmpSs can
be created by any task generating code.

task dependency graph The set of tasks and its relationships (successor / predecessor) with respect the correspon-
dant scheduling restrictions.

task generating code The code which execution create a new task. In OmpSs it can occurs when encountering a
task construct, a 1oop construct or when calling a routine annotated with a t ask declarative directive.

thread A thread is an execution entity that may execute concurrently with other threads within the same process.
These threads are managed by the OmpSs runtime system. In OmpSs a thread executes tasks.

6 Chapter 1. Introduction to OmpSs



CHAPTER
TWO

PROGRAMMING MODEL

2.1 Execution model

The OmpSs runtime system creates a team of threads when starting the user program execution. This team of threads
is called the initial team, and it is composed by a single master thread and several additional workers threads. The
number of threads that forms the team depend on the number of workers the user have asked for. So, if the user have
required 4 workers then one single master thread is created and three additional workers threads will be attached to
that initial team.

The master thread, also called the initial thread, executes sequentially the user program in the context of an implicit
task region called the initial task (surrounding the whole program). Meanwhile, all the other additional worker threads
will wait until concurrent tasks were available to be executed.

Multiple threads execute tasks defined implicitly or explicitly by OmpSs directives. The OmpSs programming model
is intended to support programs that will execute correctly both as parallel and as sequential programs (if the OmpSs
language is ignored).

When any thread encounters a loop construct, the iteration space which belongs to the loop inside the construct is
divided in different chunks according with the given schedule policy. Each chunk becomes a separate task. The
members of the team will cooperate, as far as they can, in order to execute these tasks. There is a default taskwait
at the end of each loop construct unless the nowait clause is present.

When any thread encounters a task construct, a new explicit task is generated. Execution of explicitly generated tasks is
assigned to one of the threads in the initial team, subject to the thread’s availability to execute work. Thus, execution of
the new task could be immediate, or deferred until later according to task scheduling constraints and thread availability.
Threads are allowed to suspend the current task region at a task scheduling point in order to execute a different task. If
the suspended task region is for a tied task, the initially assigned thread later resumes execution of the suspended task
region. If the suspended task region is for an untied task, then any thread may resume its execution.

The OmpSs specification makes no guarantee that input or output to the same file is synchronous when executed in
parallel. In this case, the programmer is responsible for synchronizing input and output statements (or routines) using
the provided synchronization constructs or library routines. For the case where each thread accesses a different file,
no synchronization by the programmer is necessary

2.2 Memory model

One of the most relevant features of OmpSs is to handle architectures with disjoint address spaces. By disjoint address
spaces we refer to those architectures where the memory of the system is not contained in a single address space.
Examples of these architectures would be distributed environments like clusters of SMPs or heterogeneous systems
built around accelerators with private memory.
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2.2.1 Single address space view

OmpSs hides the existence of other address spaces present on the system. Offering the single address space view fits
the general OmpSs philosophy of freeing the user from having to explicitly expose the underlying system resources.
Consequently, a single OmpSs program can be run on different system configurations without any modification.

In order to correctly support these systems, the programmer has to specify the data that each task will access. Usually
this information is the same as the one provided by the data dependencies, but there are cases where there can be extra
data needed by the task that is not declared in the dependencies specification (for example because the programmer
knows it is a redundant dependence), so OmpSs differentiates between the two mechanisms.

2.2.2 Specifying task data

A set of directives allows to specify the data that a task will use. The OmpSs run-time is responsible for guaranteeing
that this data will be available to the task code when its execution starts. Each directive also specifies the directionality
of the data. The data specification directives are the following:

* copy_in (memory-reference—1list) The data specified must be available in the address space where
the task is finally executed, and this data will be read only.

e copy_out (memory-reference-1ist) The data specified will be generated by the task in the address
space where the task will be executed.

* copy_inout (memory-reference-1list) The data specified must be available in the address space
where the task runs, in addition, this data will be be updated with new values.

* copy_deps Use the data dependencies clauses (in/out/inout) also as if they were copy_ [in/out/
inout] clauses.

The syntax accepted on each clause is the same as the one used to declare data dependencies (see Dependence flow
section). Each data reference appearing on a task code must either be a local variable or a reference that has been
specified inside one of the copy directives. Also, similar to the specification of data dependencies, the data referenced
is also limited by the data specified by the parent task, and the access type must respect the access type of the data
specified by the parent. The programmer can assume that the implicit task that represents the sequential part of the
code has a read and write access to the whole memory, thus, any access specified in a user defined top level task is
legal. Failure to respect these restrictions will cause an execution error. Some of these restrictions limit the usage of
complex data structures with this mechanism.

The following code shows an OmpSs program that defines two tasks:

float x[128];
float y[128];

int main () {
for (int i = 0; i < N; i++) {
#pragma omp target device (smp)
#pragma omp task inout (x) copy_deps // implicit copy_inout (x)
do_computation_CPU (x);

#pragma omp target device (cuda)
#pragma omp task inout (y) copy_deps // implicit copy_inout (x)
do_computation_GPU (y) ;
}
#pragma omp taskwait
return 0;

}

8 Chapter 2. Programming model
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One that must be run on a regular CPU, which is marked as target device (smp), and the second which must
be run on a CUDA GPU, marked with target device (cuda). This OmpSs program can run on different system
configurations, with the only restriction of having at least one GPU available. For example, it can run on a SMP
machine with one or more GPUs, or a cluster of SMPs with several GPUs on each node. OmpSs will internally do the
required data transfers between any GPU or node of the system to ensure that each tasks receives the required data.
Also, there are no references to these disjoint address spaces, data is always referenced using a single address space.
This address space is usually referred to as the host address space.

2.2.3 Accessing children task data from the parent task

Data accessed by children tasks may not be accessible by the parent task code until a synchronization point is reached.
This is so because the status of the data is undefined since the children tasks accessing the data may not have completed
the execution and the corresponding internal data transfers. The following code shows an example of this situation:

float y[128];

int main () {
#pragma omp target device (cuda)
#pragma omp task copy_inout (y)
do_computation_GPU (y) ;
float value0O = y[64]; // illegal access
#pragma omp taskwait

float valuel = y[64]; // legal access

return 0O;

The parent task is the implicitly created task and the child task is the single user defined task declared using the task
construct. The first assignment (value0 = y[64]) is illegal since the data may be still in use by the child task, the
taskwait in the code guarantees that following access to array vy is legal.

Synchronization points, besides ensuring that the tasks have completed, also serve to synchronize the data generated by
tasks in other address spaces, so modifications will be made visible to parent tasks. However, there may be situations
when this behavior is not desired, since the amount of data can be large and updating the host address space with
the values computed in other address spaces may be a very expensive operation. To avoid this update, the clause
noflush can be used in conjunction with the synchronization taskwait construct. This will instruct OmpSs
to create a synchronization point but will not synchronize the data in separate address spaces. The following code
illustrates this situation:

float y[128];

int main() {
#pragma omp target device (cuda)
#pragma omp task copy_inout (y)
do_computation_GPU(y) ;

#pragma omp taskwait noflush
float value(O = y[64]; // task has finished, but 'y' may not contain updated data

#pragma omp taskwait
float valuel = y[64]; // contains the computed values

return O;

2.2. Memory model 9
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The assignment valueO = y[64] may not use the results computed by the previous task since the noflush
clause instructs the underlying run-time to not trigger data transfers from separate address spaces. The following
access (valuel = y[64]) after the taskwait (withouth the nof lush clause) will access the updated values.

The taskwait’s dependence clauses (in, out, inout and on) can also be used to synchronize specific pieces
of data instead of synchronizing the whole set of currently tracked memory. The following code shows an example of
this scenario:

float x[128];
float y[128];

int main () {
#pragma omp target device (cuda)
#pragma omp task inout (x) copy_deps // implicit copy_inout (x)
do_computation_GPU (x) ;

#pragma omp target device (cuda)
#pragma omp task inout (y) copy_deps // implicit copy_inout (y)
do_computation_GPU (y);

#pragma omp taskwait on(y)
float valueO = x[64]; // may be a not updated value
float valuel = y[64]; // this value has been updated

The value read by the definition of valueO corresponds to the value already computed by one of the previous gen-
erated tasks (i.e. the one annotated with inout (y) copy_deps). However, the value read by the definition of
valuel may not corresponds with the updated value of x. The taskwait in this code only synchronizes data
referenced in the clause on (i.e. the array y).

2.3 Data sharing rules

TBD .. ticket #17

2.4 Asynchronous execution

The most notable difference from OmpSs to OpenMP is the absence of the parallel clause in order to specify
where a parallel region starts and ends. This clause is required in OpenMP because it uses a fork-join execution model
where the user must specify when parallelism starts and ends. OmpSs uses the model implemented by StarSs where
parallelism is implicitly created when the application starts. Parallel resources can be seen as a pool of threads—hence
the name, thread-pool execution model-that the underlying run-time will use during the execution. The user has no
control over this pool of threads, so the standard OpenMP methods omp_get_num_threads () or its variants are
not available to use.

OmpSs allows the expression of parallelism through tasks. Tasks are independent pieces of code that can be executed
by the parallel resources at run-time. Whenever the program flow reaches a section of code that has been declared as
task, instead of executing the task code, the program will create an instance of the task and will delegate the execution
of it to the OmpSs run-time environment. The OmpSs run-time will eventually execute the task on a parallel resource.

10 Chapter 2. Programming model
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Another way to express parallelism in OmpSs is using the clause for. This clause has a direct counterpart in OpenMP
and in OmpSs has an almost identical behavior. It must be used in conjunction with a for loop (in C or C++) and it
encapsulates the iterations of the given for loop into tasks, the number of tasks created is determined by the OmpSs
run-time, however the user can specify the desired scheduling with the clause schedule.

Any directive that defines a task or a series of tasks can also appear within a task definition. This allows the definition of
multiple levels of parallelism. Defining multiple levels of parallelism can lead to a better performance of applications,
since the underlying OmpSs run-time environment can exploit factors like data or temporal locality between tasks.
Supporting multi-level parallelism is also required to allow the implementation of recursive algorithms.

Synchronizing the parallel tasks of the application is required in order to produce a correct execution, since usually
some tasks depend on data computed by other tasks. The OmpSs programming model offers two ways of expressing
this: data dependencies, and explicit directives to set synchronization points.

2.5 Dependence flow

Asynchronous parallelism is enabled in OmpSs by the use data-dependencies between the different tasks of the pro-
gram. OmpSs tasks commonly require data in order to do meaningful computation. Usually a task will use some input
data to perform some operations and produce new results that can be later on be used by other tasks or parts of the
program.

When an OmpSs programs is being executed, the underlying runtime environment uses the data dependence infor-
mation and the creation order of each task to perform dependence analysis. This analysis produces execution-order
constraints between the different tasks which results in a correct order of execution for the application. We call these
constraints task dependences.

Each time a new task is created its dependencies are matched against of those of existing tasks. If a dependency, either
Read-after-Write (RaW), Write-after-Write (WaW) or Write-after-Read(WaR), is found the task becomes a successor
of the corresponding tasks. This process creates a task dependency graph at runtime. Tasks are scheduled for execution
as soon as all their predecessor in the graph have finished (which does not mean they are executed immediately) or at
creation if they have no predecessors.

The OpenMP task construct is extended with the in (standing for input), out (standing for output), inout (standing
for input/output), concurrent and commutative clauses to this end. They allow to specify for each task in the
program what data a task is waiting for and signaling is readiness. Note that whether the task really uses that data in
the specified way its the programmer responsibility. The meaning of each clause is explained below:

e in(memory-reference-1list): If a task has an in clause that evaluates to a given lvalue, then the task
will not be eligible to run as long as a previously created sibling task with an out, inout, concurrent or
commutative clause applying to the same Ivalue has not finished its execution.

out (memory-reference-1ist): If atask has an out clause that evaluates to a given lvalue, then the task
will not be eligible to run as long as a previously created sibling task with an in, out, inout concurrent
or commutative clause applying to the same lvalue has not finished its execution.

inout (memory-reference—1list): If a task has an inout clause that evaluates to a given lvalue, then
it is considered as if it had appeared in an in clause and in an out clause. Thus, the semantics for the in and
out clauses apply.

e concurrent (memory-reference-list): the concurrent clause is a special version of the inout
clause where the dependencies are computed with respect to in, out, inout and commutat ive but not with
respect to other concurrent clauses. As it relaxes the synchronization between tasks users must ensure that either
tasks can be executed concurrently either additional synchronization is used.

commutative (memory-reference-1list): If a task has a commutative clause that evaluates to a
given lvalue, then the task will not become a member of the commutative task set for that lvalue as long as a
previously created sibling task with an in, out, inout or concurrent clause applying to the same lvalue

2.5. Dependence flow 11
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has not finished its execution. Given a non-empty commutative task set for a certain lvalue, any task of that set
may be eligible to run, but just one at the same time. Thus, tasks that are members of the same commutative
task set are executed keeping mutual exclusion among them.

All of these clauses receive a list of memory references as argument. The syntax permitted to specify memory refer-
ences is described in Language section. The data references provided by these clauses are commonly named the data
dependencies of the task.

Note: For compatibility with earlier versions of OmpSs, you can use clauses input and output with exactly the
same semantics of clauses in and out respectively.

The following example shows how to define tasks with task dependences:

void foo (int *a, int xb) {
for (int i = 1; 1 < N; i++) {
#pragma omp task in(a[i-1]) inout (a[i]) out (b[i])
propagate (&ali-1]1, &ali]l, &b[il);

#pragma omp task in(b[i-1]) inout (b[i])
correct (&b[i-1]1, &b[i]);
}

This code generates at runtime the following task graph:

propagate

cormrect

The following example shows how we can use the concurrent clause to parallelize a reduction over an array:

#include<stdio.h>
#define N 100

void reduce (int n, int xa, int *sum) {
for (int 1 = 0; i < n; i++) {
#pragma omp task concurrent (xsum)
{

#pragma omp atomic
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ssum += al[il;

int main() {
int i, al[N];
for (i = 0; 1 < N; ++1i)
afil] =1 + 1;
int sum = 0;

reduce (N, a, &sum);

#pragma omp task in (sum)
printf ("The sum of all elements of 'a' is: %d\n", sum);

#pragma omp taskwait
return 0O;

Note that all tasks that compute the sum of the values of ‘a’ may be executed concurrently. For this reason we have to
protect with an atomic construct the access to the ‘sum’ variable. As soon as all of these tasks finish their execution,
the task that prints the value of ‘sum’ may be executed.

Note that the previous example can also be implemented using the commutat ive clause (we only show the reduce
function, the rest of the code is exactly the same):

void reduce (int n, int xa, int *sum) {
for (int i = 0; i < n; i++) |
#pragma omp task commutative (*sum)
xsum += al[i];

Note that using the commutative clause only one task of the commutative task set may be executed at the same
time. Thus, we don’t need to add any synchronization when we access to the ‘sum’ variable.

2.5.1 Extended lvalues

All dependence clauses allow extended lvalues from those of C/C++. Two different extensions are allowed:

* Array sections allow to refer to multiple elements of an array (or pointed data) in single expression. There are
two forms of array sections:

— al[lower : upper]. In this case all elements of ‘a’ in the range of lower to upper (both included)
are referenced. If no lower is specified it is assumed to be 0. If the array section is applied to an array and
upper is omitted then it is assumed to be the last element of that dimension of the array.

— allower; size]. Inthiscase all elements of ‘a’ in the range of lower to lower+(size-1) (both included)
are referenced.

» Shaping expressions allow to recast pointers into array types to recover the size of dimensions that could have
been lost across function calls. A shaping expression is one or more [size] expressions before a pointer.

The following example shows examples of these extended expressions:

void sort (int n, int +a) {
if (n < small) seqg_sort(n, a);

2.5. Dependence flow 13
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#pragma omp task inout (a[0:(n/2)-1]) // equivalent to inout (a[0;n/2])
sort (n/2, a);

#pragma omp task inout (a[n/2:n-1]) // equivalent to inout (a[n/2;n—(n/2)])
sort(n/2, &aln/2]);

#pragma omp task inout (a[0:(n/2)-1], al[n/2:n-1])
merge (n/2, a, a, &aln/21);

#pragma omp taskwait

}

Note: Our current implementation only supports array sections that completely overlap. Implementation support for
partially overlapped sections is under development.

Note that these extensions are only for C/C++, since Fortran supports, natively, array sections. Fortran array sections
are supported on any dependence clause as well.

2.5.2 Dependences on the taskwait construct

In addition to the dependencies mechanism, there is a way to set synchronization points in an OmpSs application.
These points are defined using the taskwait directive. When the control flow reaches a synchronization point, it
waits until all previously created sibling tasks complete their execution.

OmpSs also offers synchronization point that can wait until certain tasks are completed. These synchronization points
are defined adding any kind of task dependence clause to the taskwait construct.

In the following example we have two tasks whose execution is serialized via dependences: the first one produces the
value of x whereas the second one consumes x and produces the value of y. In addition to this, we have a taskwait
construct annotated with an input dependence over x, which enforces that the execution of the region is suspended
until the first task complete execution. Note that this construct does not introduce any restriction on the execution of
the second task:

int main () {
int x =0, yv = 2;

#pragma omp task inout (x)
X++;

#pragma omp task in(x) inout (y)

y = %

#pragma omp taskwait in (x)
assert(x == 1);

// Note that the second task may not be executed at this point

#pragma omp taskwait
assert (x == y);

Note: For compatibility purposes we also support the on clause on the taskwait construct, which is an alias of inout.
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2.5.3 Multidependences

Multidependences is a powerful feature that allow us to define a dynamic number of any kind of dependences. From
a theoretical point of view, a multidependence consists on two different parts: first, an lvalue expression that contains
some references to an identifier (the iterator) that doesn’t exist in the program and second, the definition of that
identifier and its range of values. Depending on the base language the syntax is a bit different:

* dependence-type ({memory-reference-1list, iterator-name = lower; size}) for
C/C++.

* dependence-type ([memory-reference-1list, iterator-name = lower, size]) for
Fortran.

Despite having different syntax for C/C++ and Fortran, the semantics of this feature is the same for the 3 languages:
the Ivalue expression will be duplicated as many times as values the iterator have and all the references to the iterator
will be replaced by its values.

The folllowing code shows how to define a multidependence in C/C++:

void foo(int n, int xv)
{
// This dependence is equivalent to inout (v[(0], v[1], ..., v[n-1])
#pragma omp task inout ({v[i], i=0;n})
{
int j;
for (int j = 0; J < n; ++3)
v[jl++;

And a similar code in Fortran:

subroutine foo(n, V)
implicit none
integer :: n
integer :: v(n)

! This dependence is equivalent to inout (v[(1], v[(2], ..., v[n])
!'Somp task inout ([v (i), i=1, n])
v =v + 1
!'Somp end task
end subroutine foo

Warning: Multidependences syntax may change in a future

2.6 Task scheduling

When the current executed task reaches a fask scheduling point, the implementation may decide to switch from this
task to another one from the set of eligible tasks. Task scheduling points may occur at the following locations:

* in a task generating code
* in a taskyield directive

* in a taskwait directive

2.6. Task scheduling 15
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* just after the completion of a task

The fact of switching from a task to a different one is known as task switching and it may imply to begin the execution
of a non-previously executed task or resumes the execution of a partially executed task. Task switching is restricted in
the following situations:

* the set of eligible tasks (at a given time) is initially formed by the set of tasks included in the ready task pool (at
this time).

* once a tied task has been executed by a given thread, it can be only resumed by the very same thread (i.e. the set
of eligible tasks for a thread does not include tied tasks that has been previously executed by a different thread).

* when creating a task with the if clause for which expression evaluated to false, the runtime must offer a mecha-
nism to immediately execute this task (usually by the same thread that creates it).

* when executing in a final context all the encountered task generating codes will execute the task immediately
after creating it as if it was a simple routine call (i.e. the set of eligible tasks in this situation is restricted to
include only the newly generated task).

Note: Remember that the ready task pool does not include tasks with dependences still not fulfilled (i.e. not all
its predecessors have finished yet) or blocked tasks in any other condition (e.g. tasks executing a taskwait with non-
finished child tasks).

2.7 Task reductions

The reduction clause allow us to define an asynchronous task reduction over a list of items. For each item, a private
copy is created for each thread that participates in the reduction. At task synchronization (dependence or taskwait),
the original list item is updated with the values of the private copies by applying the combiner associated with the
reduction—-identifier. Consequently, the scope of a reduction begins when the first reduction task is created
and ends at a task synchronization point. This region is called the reduction domain.

The taskwait construct specifies a wait on the completion of child tasks in the context of the current task and com-
bines all privately allocated list items of all child tasks associated with the current reduction domain. A taskwait
therefore represents the end of a domain scope.

The following example computes the sum of all values of the nodes of a linked-list. The final result of the reduction is
computed at the taskwait:

struct node_t {
int val;
struct node_t* next;

}i

int sum_values (struct node_t* node) {
int red=0;
struct node_t+* current = node;

while (current != 0) {
#pragma omp task reduction (+: red)
{
red += current->val;
}
node = node->next;

}

#pragma omp taskwait
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return red;

Data-flow based task execution allows a streamline work scheduling that in certain cases results in higher hardware
utilization with relatively small development effort. Task-parallel reductions can be easily integrated into this execution
model but require the following assumption. A list item declared in the task reduction directive is considered as if
declared concurrent by the depend clause.

In the following code we can see an example where a reduction domain begins with the first occurrence of a partici-
pating task and is implicitly ended by a dependency of a successor task.:

#include<assert.h>

int main(int argc, char xargv[]) {

const int SIZE 1024;
const int BLOCK = 32;
int array[SIZE];

int i;

for (i = 0; 1 < SIZE; ++1i)
array[i] = 1i+1;

int red = 0;
for (int 1 = 0; i < SIZE; i += BLOCK) {
#pragma omp task shared(array) reduction (+:red)
{
for (int j = i; j < i+BLOCK; ++7j)
red += arrayl[jl;

}
#pragma omp task in(red)
assert (red == ((SIZE = (SIZE+1))/2));

#pragma omp taskwait

}

Nested task constructs typically occur in two cases. In the first, each task at each nesting level declares a reduction
over the same variable. This is called multilevel reduction. It is important to point out that only task synchronization
that occurs at the same nesting level at which a reduction scope was created (that is the nesting level that first encounter
a reduction task for a list item), ends the scope and reduces private copies. Within the reduction domain, the value of
the reduction variable is unspecified.

In the second occurrence each nesting level reduces over a different reduction variable. This happens for example if
a nested task performs a reduction on task local data. In this case a taskwait at the end of each nesting level is
required. We call this occurrence a nested-domain reduction.

2.8 Runtime Library Routines

OmpSs uses runtime library routines to set and/or check the current execution environment, locks and timing services.
These routines are implementation defined and you can find a list of them in the correspondant runtime library user
guide.

2.8. Runtime Library Routines 17
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2.9 Environment Variables

OmpSs uses environment variables to configure certain aspects of its execution. The set of these variables is imple-
mentation defined and you can find a list of them in the correspondant runtime library user guide.
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CHAPTER
THREE

LANGUAGE DESCRIPTION

This section describes the OmpSs language, this is, all the necessary elements to understand how an application
programmed in OmpSs executes and/or behaves in a parallel architecture. OmpSs provides a simple path for users
already familiarized with the OpenMP programming model to easily write (or port) their programs to OmpSs.

This description is completely guided by the list of OmpSs directive constructs. In each of the following sections
we will find a short description of the directive, its specific syntax, the list of its clauses (including the list of valid
parameters for each clause and a short description for them). In addition, each section finalizes with a simple example
showing how this directive can be used in a valid OmpSs program.

As is the case of OpenMP in C and C++, OmpSs directives are specified using the #pragma mechanism (provided by
the base language) and in Fortran they are specified using special comments that are identified by a unique sentinel.
The sentinel used in OmpSs (as is the case of OpenMP) is omp. Compilers will typically ignore OmpSs directives if
support is disabled or not provided.

3.1 Task construct

The programmer can specify a task using the task construct. This construct can appear inside any code block of the
program, which will mark the following statement as a task.

The syntax of the t ask construct is the following:

#pragma omp task [clauses]
structured-block

The valid clauses for the t ask construct are:
e private(<list>)
* firstprivate(<list>)
¢ shared(<list>)
* depend(<type>: <memory-reference-list>)
¢ <depend-type>(<memory-reference-list>)
* reduction(<operator>: <memory-reference-list>)
e priority(<value>)
¢ if(<scalar-expression>)
* final(<scalar-expresion>)
* label(<string>)

e tied
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The private and firstprivate clauses declare one or more list items to be private to a task (i.e. the task receives
a new list item). All internal references to the original list item are replaced by references to this new list item.

List items privatized using the private clause are uninitialized when the execution of the task begins. List items
privatized using the firstprivate clause are initialized with the value of the corresponding original item at task
creation.

The shared clause declare one or more list items to be shared to a task (i.e. the task receives a reference to the
original list item). The programmer must ensure that shared storage does not reach the end of its lifetime before tasks
referencing this storage have finished.

The depend clause allows to infer additional task scheduling restrictions from the parameters it defines. These
restrictions are known as dependences. The syntax of the depend clause include a dependence type, followed by
colon and its associated list items. The list of valid type of dependences are defined in section “Dependence flow” in
the previous chapter. In addition to this syntax, OmpSs allows to specify this information using as the name of the
clause the type of dependence. Then, the following code:

’#pragma omp task depend(in: a,b,c) depend(out: d)

Is equivalent to this one:

’#pragma omp task in(a,b,c) out(d)

The reduction clause allows to define the task as a participant of a reduction operation. The first occurrence of
a participating task defines the begin of the scope for the reduction. The end of the scope is implicitly ended by a
taskwait or a dependence over the memory-reference—itemn.

If the expression of the if clause evaluates to frue, the execution of the new created task can be deferred, otherwise
the current task must suspend its execution until the new created task has complete its execution.

If the expression of the final clause evaluates to true, the new created task will be a final tasks and all the rask
generating code encountered when executing its dynamic extent will also generate final tasks. In addition, when
executing within a final task, all the encountered task generating codes will execute these tasks immediately after its
creation as if they were simple routine calls. And finally, tasks created within a final task can use the data environment
of its parent task.

The tied clause defines a new task scheduling restriction for the newly created tasks. Once a thread begins the
execution of this task, the task becomes tied to this thread. In the case this task has suspended its execution by any
task scheduling point only the same thread (i.e. the thread to which the task is tied to) may resume its execution.

The label clause defines a string literal that can be used by any performance or debugger tool to identify the task
with a more human-readable format.

The following C code shows an example of creating tasks using the task construct:

float x
float y =
float z

Il

o o o
[eNeNe)
~0 o~

~

int main () {

#pragma omp task
do_computation (x);

#pragma omp task

{
do_computation (y);
do_computation(z);
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return 0O;

When the control flow reaches #pragma omp task construct, a new task instance is created, however when the
program reaches return 0 the previously created tasks may not have been executed yet by the OmpSs run-time.

The task construct is extended to allow the annotation of function declarations or definitions in addition to structured-
blocks. When a function is annotated with the task construct each invocation of that function becomes a task creation
point. Following C code is an example of how task functions are used:

extern void do_computation (float a);
#pragma omp task
extern void do_computation_task (float a);

float x = 0.0;

int main() {
do_computation (x); //regular function call
do_computation_task(x); //this will create a task
return 0O;

Invocation of do_computation_task inside main function create an instance of a task. As in the example above,
we cannot guarantee that the task has been executed before the execution of the main finishes.

Note that only the execution of the function itself is part of the task not the evaluation of the task arguments. Another
restriction is that the task is not allowed to have any return value, that is, the return must be void.

3.2 Target construct

To support heterogeneity a new construct is introduced: the target construct. The intent of the target construct is to
specify that a given element can be run in a set of devices. The target construct can be applied to either a task construct
or a function definition. In the future we will allow to allow it to work on worksharing constructs.

The syntax of the target construct is the following:

#pragma omp target [clauses]
task—-construct | function-definition | function-header

The valid clauses for the target construct are the following:

device(target-device) - It allows to specify on which devices should be targeting the construct. If no device
clause is specified then the SMP device is assumed. Currently we also support the CUDA device that allows the
execution of native CUDA kernels in GPGPUs.

copy_in(list-of-variables) - It specifies that a set of shared data may be needed to be transferred to the device
before the associated code can be executed.

copy_out(list-of-variables) - It specifies that a set of shared data may be needed to be transferred from the device
after the associated code is executed.

copy_inout(list-of-variables) - This clause is a combination of copy_in and copy_out.

copy_deps - It specifies that if the attached construct has any dependence clauses then they will also have
copy semantics (i.e., in will also be considered copy_in, output will also be considered copy_out and inout as
copy_inout).
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» implements(function-name) - It specifies that the code is an alternate implementation for the target devices of
the function name specified in the clause. This alternate can be used instead of the original if the implementation
considers it appropriately.

e shmem(size_t) - It specifies the amount of memory the runtime will allocate for CUDA and OpenCL kernels.
Shared memory should be handled by the user in the kernel code.

* ndrange(<syntax>) - It specifies the thread hierarchy used to execute the kernel in the device. It may be expressed by mea

— ndrange(n, G1,..., Gn, L1,...,Ln) - The ‘n’ parameter determines the number of dimmensions, (i.e.,
1, 2 or 3), and the ‘Gx’ and ‘Lx’ are sequence of scalars determining the global and local sizes
respectively. There will be as many ‘G’ and ‘L’ as the number of dimmensions (e.g., ndrange(2, 1024,
1024, 128, 128), will create a thread hierarchy of 1024x1024 elements, grouped in blocks of 128x128
elements).

— ndrange(n, G[n], L[n] ) - The ‘n’ parameter determines the number of dimmensions, (i.e., 1, 2 or 3),
and the ‘G’ and ‘L’ vectors contain as many elements as the dimension parameters (e.g., ndrange(2,
Global, Local), where ‘Global’ is an int[ | = {1024, 1024} and ‘Local’ is an int [ | = {128,128}, will
create a thread hierarchy of 1024x1024 elements, grouped in blocks of 128x128 elements).

Additionally, both SMP and CUDA tasks annotated with the target construct are eligible for execution a cluster envi-
ronment in an experimental implementation. Please, contact us if you are interested in using it.

Restrictions:
* At most only one device clause must appear in the target construct.
* At most only one shmem clause must appear in the target construct.
¢ At most only one implements clause must appear in the target construct.

* At most only one ndrange clause must appear in the target construct.

3.3 Loop construct

When a task encounters a loop construct it starts creating tasks for each of the chunks in which the loop’s iteration
space is divided. Programmers can choice among different schedule policies in order to divide the iteration space.

The syntax of the 1oop construct is the following:

#pragma omp for [clauses]
loop-block

The valid clauses for the 1 oop construct are the following:

¢ schedule(schedule-policy[, chunk-size]) - It specifies one of the valid partition policies and, optionally, the
chunk-size used to divide the iteration space. Valid schedule policies are one the following options:

— dynamic - loop is divided to team’s threads in tasks of chunk-size granularity. Tasks are assigned as threads
request them. Once a thread finishes the execution of one of these tasks it will request another task. Default
chunk-size is 1.

— guided - loop is divided as the executing threads request them. The chunk-size is proportional to the
number of unassigned iterations, so it starts to be bigger at the beginning, but it becomes smaller as the
loop execution progresses. Chunk-size will never be smaller than chunk-size parameter (except for the last
iteration chunk).

— static - loop is divided into chunks of size chunk-size. Each task is divided among team’s threads following
a round-robin fashion. If no chunk-size is provided all the iteration space is divided by number-of-threads
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chunks of the same size (or proximately the same size if number-of-threads does not divide number-of-
iterations).

* nowait - When this option is specified the encountering task can immediately proceed with the following code
without wait for all the tasks created to execute each of the loop’s chunks.

Following C code shows an example on loop distribution:

float x[10];

int main() {
#pragma omp for schedule(static)
for (int i = 0; 1 < 10; i++) |

do_computation(x[i]);
}

return O;

3.4 Taskwait construct

Apart from implicit synchronization (task dependences) OmpSs also offers mechanism which allow users to synchro-
nize task execution. taskwait construct is an stand-alone directive (with no code block associated) and specifies a
wait on the completion of all direct descendant tasks.

The syntax of the taskwait construct is the following:

#pragma omp taskwait [clauses]

The valid clauses for the taskwait construct are the following:

* on(list-of-variables) - It specifies to wait only for the subset (not all of them) of direct descendant tasks.
taskwait with an on clause only waits for those tasks referring any of the variables appearing on the list
of variables.

The on clause allows to wait only on the tasks that produces some data in the same way as in clause. It suspends the
current task until all previous tasks with an out over the expression are completed. The following example illustrates
its use:

int computel (wvoid);
int compute2 (wvoid);
int main ()

{

int resultl, result2;

#pragma omp task out (resultl)
resultl = computel () ;

#pragma omp task out (result2)
result2 = compute2();

#pragma omp taskwait on (resultl)
printf ("resultl = %d\n",resultl);

#pragma omp taskwait on (result2)
printf ("result2 = %d\n",result2);
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return 0O;

3.5 Taskyield directive

The taskyield directive specifies that the current task can be suspended and the scheduler runtime is allowed to
scheduler a different task. The taskyield explicitly includes a task schedule point.

The syntax of the taskyield directive is the following:

#pragma omp taskyield

The taskyield directive has no related clauses.

In the following example we can see how to use the taskyield directive:

void compute ( wvoid ) {
int a=0,b=0;

#pragma omp task shared(a)
{ at+;}

#pragma omp taskyield

#pragma omp task shared (b)
{ bt+; }

#pragma omp taskwait
int main () {
#pragma omp task

compute () ;

#pragma omp taskwait
return 0;

When encountering the taskyield directive the runtime system may decide among continue execute the task com-
pute (i.e. the current task) or begins the execution of the a++ task (if not yet executed).

3.6 Atomic construct

The atomic construct ensures that following expression is executed atomically. Runtime systems will use native
machine mechanism to guarantee atomic execution. If there is no native mechanism to guarantee atomicity (e.g.
function call) it will use a regular critical section to implement the atomic construct.

The syntax of the at omic construct is the following:

#pragma omp atomic
structured-block

Atomic construct has no related clauses.
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3.7 Critical construct

The critical construct allows programmers to specify regions of code that will be executed in mutual exclusion.
The associated region will be executed by a single thread at a time, other threads will wait at the beginning of the
critical section until no thread in the team was executing it.

The syntax of the critical construct is the following:

#pragma omp critical
structured-block

Critical construct has no related clauses.

3.8 Declare reduction construct

The user can define its own reduction-identifier using the declare reduction directive. After declaring the
UDR, the reduction-identifier can be used in a reduction clause. The syntax of this directive is the following one:

#pragma omp declare reduction (reduction-identifier : type-1list : combiner—-expr)._
—[initializer (init—-expr)]

where:
* reduction-identifier is the identifier of the reduction which is being declared
* type-list is a list of types

* combiner-expr is the expression that specifies how we have to combine the partial results. We can use two
predefined identifiers in this expression: omp_out and omp_in. The omp_out identifier is used to represent
the result of the combination whereas the omp_in identifier is used to represent the input data.

* init-expr is the expression that specifies how we have to initialize the private copies. We can use also
two predefined identifiers in this expression: omp_priv and omp_orig. The omp_priv identifier is used to
represent a private copy whereas the omp_orig identifier is used to represent the original variable that is
being involved in a reduction.

In the following example we can see how we declare a UDR and how we use it:

struct C {
int x;

bi
void reducer (struct Cx out, struct Cx in) {
(xout) .x += (*in) .x;
#pragma omp declare reduction (my_UDR : struct C : reducer (&§omp_out, &omp_in)),
—initializer (omp_priv = {0})
int main () {
struct C res = { 0 };
struct C v[N];

init (&v);

for (int i = 0; 1 < N; ++1) {
#pragma omp task reduction(my_UDR : res) in(v) firstprivate (i)
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{
res.x += v[i].x;
}
}
#pragma omp taskwait

}
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CHAPTER
FOUR

API DESCRIPTION

This section describes the support of OmpSs through direct library calls to the runtime system. This services will
allow to configure, check configuration or perform some functionality (e.g., lock services) when using the OmpSs
programming model.

4.1 Thread count and identifier

Setting or getting the number of threads. In OmpSs the omp_get_max_threads () is equivalent to
omp_get_num_threads () due there is no explicit parallel region:

void omp_set_num_threads (int num_threads);
int omp_get_num_threads (void);
int omp_get_max_threads (void);

Getting the thread identifer:

int omp_get_thread_num(void);

Getting the number of CPUs availabe in the current execution:

int omp_get_num_procs (void);

Getting the Operating System limit of threads:

int omp_get_thread_limit (void);

4.2 Useful getters and setters*

Setting or getting the schedule policy as the default policy for a 1oop construct (ie, for in C/C++ and do in
Fortran). The routines also allow to set a modifer (ie, a chunk size):

void omp_set_schedule (omp_sched_t kind, int modifier);
void omp_get_schedule (omp_sched_t +kind, int »modifier);

Getting if the current task is in final mode (ie, the final-expression has evaluated to true):

int omp_in_final (void);
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4.3 Using locks

The following routines allow to initialize, destroy, set, unset and test an OmpSs lock:

void omp_init_lock (omp_lock_t =xlock);
void omp_destroy_lock (omp_lock_t =xlock);
void omp_set_lock (omp_lock_t =lock);
void omp_unset_lock (omp_lock_t =xlock);
int omp_test_lock (omp_lock_t =xlock);

4.4 Using nested locks

The following routines allow to initialize, destroy, set, unset and test an OmpSs nested lock:

void omp_init_nest_lock (omp_nest_lock_t =xlock);
void omp_destroy_nest_lock (omp_nest_lock_t =xlock);
void omp_set_nest_lock (omp_nest_lock_t =xlock);
void omp_unset_nest_lock (omp_nest_lock_t =xlock);
int omp_test_nest_lock (omp_nest_lock_t =xlock);

A set operation over a nested lock will proceed if the lock owner is the current thread, and will block if is not the
current thread.

4.5 Timing routines

The following routines will get a time-stamp or tick-stamp based on the processor clock:

double omp_get_wtime (void);
double omp_get_wtick (void);
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