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Agenda: OpenMP Fundamentals u-

OpenMP brief introduction
— overview, a bit of history, main components, execution model, memory
model, language syntax

The fork-join model

— creating parallel regions: the parallel construct

— manually distributing work among threads

— sequential code inside the parallel region: the master construct

Data environment
— data-sharing attributes: private and shared data

— data races when sharing variables and critical sections
— data-sharing rules, default attributes in the data environment
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OpenMP overview (=

Parallel Programming Model
— (initially) Designed for shared memory parallel computers
» single address space across the host memory system
— But now it also includes multi-device architectures (GPUs, Accelerators,...)

» it may imply additional (per device) address spaces
» support of data mapping from/to each address space

Maintained by the Architecture Review Board (ARB)

— Permanents members: AMD, ARM, Cray, Fujitsu, HP, IBM, Intel, Micron,
NEC, NVIDIA, Oracle, Red Hat and Texas Instruments

— Auxiliary members: ANL, LLNL, BSC, cOMPunity, EPCC, LANL, LBNL,
NASA, ORNL, RWTH Aachen University, SNL, TACC and UH

Supported by most compiler vendors
— Intel, IBM, PGI, Tl, Sun, Cray, Fujitsu, MS, HP, GCC,...
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History of the OpenMP specification

A mature parallel programming model (more than 20 years oId)
Complex to face the whole (latest) specification
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OpenMP components

OpenMP Directives: OpenMP API: OpenMP
code annotation functions and routines Environment Variables




Execution model

Based on the fork-join paradigm
— a thread team is a set of threads which co-operate on a task

— the

is responsible for coordinating the team
— usually running one thread per processor (but could be more / or less)

— different threads may follow different control flows

Parallel programming with OpenMP
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Memory model

A relaxed-consistency memory model

P, | P; [P, | Ps | Po | P; | Ps
— different threads may see different values for the
same (shared) variable - not consistent §§ §§‘ §§ §§ §§ §.§_ §§ §§

— consistency is only guaranteed at specific points nlnnln
@ @

» explicit points: the flush directive
» implicit points: other directives

— luckily, the implicit points are usually enough

HOST MEMORY

The operation enforcing consistency is called the flush operation

— all previous read and writes by this thread have been completed

— all these changes are visible to all other threads

— they are also known as fences or memory barriers

— In the example: At moment (1) P2 has read the variable A from memory and
it has modified it, then at moment (2) P6 wants to read variable A.
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OpenMP (directive) syntax

In Fortran language

— through a specially formatted comment
|sentinel directive-name [clause[[,] clause]...]
— where sentinel is one of

» ISOMP or CSOMP or *$OMP in fixed format
» ISOMP in free format

— API runtime services
» omp_lib module contains the subroutine and function definitions
In C/C++ language
— using compiler directives™
|#pragma omp directive-name [clause[[,] clause]...]

— API runtime services
» omp.h contains the API prototypes and data types definitions

* directives are ignored if compiler does not recognize OpenMP
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The structured block

Most directives apply to a structured block:

#pragma omp directive-name [clause[[,] clause]...]
structured-block

— block of one or more statements with one entry point / one exit point
» i.e. branching in or out is not allowed
» terminating the program is allowed (abort/exit)

#pragma omp directive-name clausel(...) clause2(...) ‘ #pragma omp directive-name clausel(...) clause2(...)
{ for (inti=0; i< SIZE; i++) {
set_of instructions (no branch in/out); ‘ Ali]l=0;
} }
#pragma omp directive-name clausel(...) clause2(...) ‘ #pragma omp directive-name clausel(...) clause2(...)
{ “orﬁnti=0;i<SEEﬂ++){
set_of instructions; ‘ Ali]l=0;
if ( expr ) exit(0); ‘ if (i == INDEX ) break; x
} }
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The parallel construct

Creating a parallel region
— always attached to a structured block

#pragma omp parallel [clause[[,] clause]...]
{structured-block}

Where clause:

— num_threads (expression)
— if (expression)

— shared (var-list)

— private (var-list)

— firstprivate (var-list)

— default (dtype)

— reduction (var-list)

Parallel programming with OpenMP
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Specifying the number of threads

The maximum number of threads is controlled by

— an internal control variable (ICV) called nthreads-var
» the OpenMP API nthreads-var setter

void omp_set_num_threads (int value); // subsequent parallel region

» the OpenMP API nthreads-var getters

int omp_get_num_threads (void); // current team number of threads
int omp_get_max_threads (void); // maximum number of threads

» the OpenMP environment variable nthreads-var setter

S export OMP_NUM_THREADS=<list>
S ./myProgram

— the num_threads clause (overriding nthreads-var value)

Parallel programming with OpenMP 12



Example: creating a parallel region (1)

Creating a parallel region of 3 threads (num_threads clause)

#include <stdio.h>

void main (void)
{
#pragma omp parallel num_threads(3)

{
printf("Hello world!\n");

}
}

Creating a parallel region of 3 threads (omp_set_num_threads)

ttinclude <stdio.h>
#include <omp.h>

void main (void)

{
omp_set_num_threads(3);
#pragma omp parallel

{
printf("Hello world!\n");

}
}

Parallel programming with OpenMP

S gcc -fopenmp myHello.c -o myHello

S ./myHello
Hello world!
Hello world!
Hello world!

S gcc -fopenmp myHello.c -o myHello
S ./myHello
Hello world!
Hello world!

Hello world!
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Exa‘le: crea.t‘i;ﬁ'é a parallel region (3)

But still more useful Is to use the environment variable

#include <stdio.h>
#include <omp.h>

void main (void)

{

#pragma omp parallel

{
printf("Hello world...\n");

}

#pragma omp parallel

{
printf("...and godbye!\n");

}

Parallel programming with OpenMP

S gec -fopenmp myHello.c -o myHello
S OMP_NUM_THREADS=2 ./myHello
Hello world...

Hello world...

...and goodbye!

...and goodbye!

$ OMP_NUM_THREADS=3 ./myHello
Hello world...

Hello world...
Hello world...
...and goodbye!
...and goodbye!
...and goodbye!
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Replui_c;_éte work inside the parallel region
When two “blocks of code” may run in parallel...

#include <Stdi0.h> s t|me /myProgram
4 mai ” real Om4.003s
}/OI main (void) user 0m0.000s
do_work_1(); sys 0mO0.000s
do_work_2();
} do work 1() do_work 2()
T

... we just include them within a parallel region (replicate)

#include <stdio.h>
#include <omp.h>
void main (void)

S time ./myProgram
real 0m4.104s

{ user 0m0.000s
#pragma omp parallel num_threads(2) sys 0mO0.000s
{
do_work_1(); do_work 1() do_work_2()
do_work_2(); kg 5
) . o
j " I

do work 1() do work 2()
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ldentifying threads inside the parallel region
Inside a parallel region each thread has its own identifier

int omp_get_thread_num (void); // get the identification number for the current thread/team

— from 0 to N-1 (where N is the number of threads of the team)
— master thread is always identified by O (zero)
— routine returns 0 (zero) if called outside a parallel region

Example using the thread identifier

 #include <stdio.h>

 #include <omp.h>

' void main (void)

 {

| #pragma omp parallel num_threads(4)

| {

~intid = omp_get_thread_num();

| printf("Hello world! | am the thread %d.\n" id);
|}
 }

Parallel programming with OpenMP

S ./myThreadld

Hello world! | am the thread 2.
Hello world! | am the thread 1.
Hello world! | am the thread 0.
Hello world! | am the thread 3.
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Distribute work inside the parallel region (1) ©
When two “blocks of code” may run in parallel...

#include <stdio.h> S time ./myProgram
o y real 0m4.003s
}'0' el user 0m0.000s

do_work_1();

do_work_2();
} do work 1() do_work 2()

... we can use the thread identifier to distribute work

#tinclude <stdio.h>

#include <omp.h> $ time ./myProgram

void main (void) real 0m2.604s
{ user 0m0.000s
?pragma omp parallel num_threads(2) sys  0mO0.000s

intid = omp_get_thread_num();
if (id==0)do_work_1();
if (id==1)do_work_2();
}
}

do_work_2()

Parallel programming with OpenMP 17



Distribute work inside the parallel region (2)

Thread identifier must be carefully used
— Rely on the number of threads is never a good idea
— OpenMP offers other mechanisms to distribute work

The following example is actually wrong

#include <stdio.h>
#include <omp.h>
void main (void)
{
#pragma omp parallel
{
intid = omp_get_thread_num();
if (id==0)do_work_1();
if (id==1)do_work_2();
}

}

Parallel programming with OpenMP

S export
S time ./myProgram

real 0m2.604s
user 0m0.000s
sys 0m0.000s

do work 1“

(=
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Distribute work inside the parallel region (3)
Workaround to the unassigned work problem

#pragma omp parallel

|
| {

- intid = omp_get_thread_num();

- if(id==0)do_work_1();

- if(id==1 || omp_get_num_threads() < 2) do_work_2();
|}

But still non-optimal solution
— Think on more than 2 sections?

WARNING!!!

Don’t try this at home*

* But you can use it during this tutorial

Parallel programming with OpenMP

S export OMP_NUM_THREADS=1
S time ./myProgram

real 0m4.003s

user 0m0.000s

sys 0m0.000s

do_work_1() do_work_2()

$ export OMP_NUM_THREADS=2
S time ./myProgram

real 0m2.604s
user 0m0.000s
sys 0mO0.000s

do work 1“

do_work_2()
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#include <stdio.h>
#include <omp.h>
void main (void) {
#pragma omp parallel num_threads(2)
{
do_work_1();
do_work_2();
}
}

Distribute work (threads

ttinclude <stdio.h>
#include <omp.h>
void main (void) {
#pragma omp parallel num_threads(2)
{
intid = omp_get_thread_num();
if (id ==0)do_work_1();
if (id == 1) do_work_2();
}
}

Parallel programming with OpenMP

Summ_éry: replicate vs distribute work
Replicate work (all threads execute the same work)

S time ./myProgram
real 0m2.604s

user 0m0.000s
sys 0m0.000s

do_work 1() do_work_2()

do work 1() do work 2()

“share” the amount of work)

S time ./myProgram
real 0m2.604s

user 0m0.000s
sys 0mO0.000s

do work 1“

do_work_2()
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Distribute loop iterations inside the parallel regior((
Parallel approach

#include <omp.h>
#define SIZE 1204
double A[SIZE];
void main (void)

{

Target: independent loop

#define SIZE 1204
double A[SIZE];
void main (void)
{
for (inti=0; i<SIZE; i++) {
Ali]=0;
}
}

— Programmer must guarantee no
dependences across loop iterations

— Compute lower bound and upper
bound for each thread (using actual
boundaries, thread id and number
of threads)

Parallel programming with OpenMP

#pragma omp parallel

{

intid = omp_get_thread_num();

int nt = omp_get_num_threads();

int Ib = id * (SIZE/nt);

int ub = (id+1)*(SIZE/nt) + ( (id==nt-1)? (SIZE%nt) : 0 );

for (inti=Ib; i< ub; i++) {
Ali]=0;
}
}
}

— But still non-optimal solution
» more threads than iterations
» load imbalance (iters/threads)
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Parallel construct: the if clause
Avoids creating parallel regions Example of the if-clause usage

#pragma omp parallel if (expr) #L"Cf'ude <omp.h>
tidefine SIZE ...
{structured-block} double A[SIZE];
. \ void main (void)
— sometimes we only want to run in {
parallel under certain conditions ?"""g"‘a omp parallel if(SIZE>256)
— if expr evaluates to false parallel int id=omp_get_threadgnun;0(:)
. int nt = omp_get_num_threads();
construct will only use 1 thread it b = (ST
— still creates a new team and data e = (id+1)*(SIZE/nt)+{({id==nt-1)2(SIZE%nt):0);
) or (inti=Ib; i< ub;i++) {
environment ALil=0;
}
}
}

Parallel programming with OpenMP 22



Master construct

Only the master thread executes a given region

#fpragma omp master
{structured-block}

— the master construct has no clauses

Master construct's semantics

— other threads do not execute the structured block
— there is no implicit barrier at the entry

— there is no implicit barrier at the end

#pragma omp parallel num_threads(2)

{

intid = omp_get_thread_num(); do ()
#pragma omp master o do_work,2()__
do_work_1(); // execute with one thread ., 4
do_work_2(id); // execute with N threads do_work_2()

}

Parallel programming with OpenMP 23
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OpenMP constructs and data environment se

Scoping variables in an OpenMP construct (ownership)
— determine the scope for each variable: shared and private

— shared data can be accessed by all the threads

— private data can only be accessed by the owner thread

‘ #include <stdio.h> S _/myProgram

#include <omp.h> Hello world! | am thread 2. | like 3.141593.

Couble Pl ; Hello world! | am thread 0. | like 3.141593.

| Hello world! | am thread 1. | like 3.141593.

 void main (void) Hello world! | am thread 3. | like 3.141593.

{ intid =0;

~ #pragma omp parallel num_threads(4) shared(PlI) private(id) e 2

| — T
id = omp_get_thread_num(); Cu—

|
| printf("Hello world! | am thread %d. | like %f.\n", id, Pl1);
o}

\

.
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Privatizing variables inside the construct @

The variable inside the construct is a new variable

— the new variables have the same type than original variable

— in parallel construct it means all threads have a different variable

— they can be accessed without any kind of synchronization

The private (storage) and firstprivate (storage + copy) clauses
#pragma omp parallel {private|firstprivate} (list)

{structured-block}

— private variables have undefined value when starting the block
— firstprivate variables are initialized to the value of the original one

double Pl =3.14159265359;

#pragma omp parallel private(PI)

{

Pl = <expr>;

}
printf("Pl = %f \n", P1);

double PI =3.14159265359;

#pragma omp parallel firstprivate(PI)

{
<lvalue> = f(P1); // including PI = f(P1);

}
printf("Pl = %f \n", P1);

Parallel programming with OpenMP
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The threadprivate directive

(=

Allows to create a per-thread copy of “global” variables

‘ #fpragma omp threadprivate (var-list)

threadprivate can be applied to:
— global or static variables

— class static data members (C++)
The threadprivate storage persist
— but persistence is complex

#include <stdio.h>
char buffer[SIZE];
#pragma omp threadprivate(buffer

void main (void) Now buffer have a per-
{ thread copy (~private)
#pragma omp parallel

{

buffer = <expr>;

Using static variable:

#include <stdio.h>

Now foo() can be called
by multiple threads at the

char* foo(void)

{

same time

static char buffer[SIZE];
#pragma omp threadprivate(buffer)

return buffer;
} Returns correct
address to caller
void main (void)

{

#pragma omp parallel

{

char *a =foo();

-
}

Parallel programming with OpenMP
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Sharing variables inside the parallel region (1)

The variable is “the same” outside/inside the construct
— in parallel construct it means all threads see the same variable (address)
— but not necessarily the same value (consistency issue)

— usually need some kind of synchronization to update them correctly
» synchronization: mutual exclusion or atomic updates
» synchronization also guarantees consistency points

#include <stdio.h> — all threads read same variable

double PI = 3.14159265359; — after the parallel region variable
L modifications still are visible

void main (void)
intid =0;

{ $ ./myProgram
PI =3.000000;
#pragma omp parallel num_threads(4) shared(Pl)

{
Pl =3;

}
printf("Pl = %f \n", PI);
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Sharing variables inside the parallel region (2)
Modifying shared variables (‘a’ and ‘b’) inside the parallel region

s O g — variables ‘NT’ & ‘ITERS’ have no data race
#include <assert.h>
il e — variable ‘@’ has no data race
inta=0,b=0, TERS = 100; — variable ‘b’ may give incorrect results
void main (void) .
{ — abit of assembly...b=b +1 = load,
#pragma omp parallel num_threads(NT) shared(a, b, NT, ITERS)
{ — An example of two ‘b=b+1’ executed
#pragma omp master
T TERe: concurrently: b=5, ((b+1)+1)
Reg-1 Thread-1 b Thread-2 Reg-2
for (int i = 0; i<ITERS; i++) {
b=b+1; r1=5 load b, r1 @ ri=xX
} ri=6 increment rl 5 ri=X
} rl=6 5 load b, r1 r1=5
assert ( a == NT*ITERS, "Value of 'a' is incorrect!!!") // correct B B
assert ( b == NT*ITERS, "Value of 'b" is incorrect!!!") // incorrect ri=e storerl, b 6 r1=5
} rl=6 6 increment rl rl=6
rl=6 @ storerl, b r1=6
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The critical construct
Mutual exclusion regions

#pragma omp critical [(name) [hint(hint-expression)] ]
{structured-block}

Critical construct’'s semantics

— only one thread can be executing the region at any given time

— by default all critical regions are synchronized all-to-all

— if you provide a name only those regions with the same name synchronize

#include <omp.h> “‘.—.—.—.00
void main (void) :,. .:‘_
{ —l——m
intb=0,NT=4,ITERS = 100; . .
— in this example we would get a
#pragma omp parallel num_threads(NT) shared(b, ITERS) extreme |y poor performa nce.:

o= TR — almost all the code has been
pragma omp critical

b=b+1; serialized!!!
} — ... but this is a well-know pattern

assert ( b == NT*ITERS, "Value of 'b" is incorrect!!!"); // correct

}
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The reduction pattern and the manual approach (
All threads are accumulating values into a single variable

#include <omp.h>

void main (void) {
intb=0, NT = 2;
omp_set_num_threads(NT);
#pragma omp parallel shared

{
for (int i = 0; i<ITERS; i++) {

Data Race!!!

assert ( b == NT*ITERS, "Value of 'b' is incorrect!!!")
}

The manual approach:

1. create-initialize a per-thread copy

2. accumulate partial results using this
private copy (no synchro)

3. accumulate each partial results into

the original variable (critical)
Parallel programming with OpenMP

solution

#include <omp.h>

void main (void)

{
intb=0, NT=2;
omp_set_num_threads(NT);
#pragma omp parallel shared(b, NT)
{

@ intp_b=0;

for (int i = 0; i<ITERS; i++) {
© pb=pb+];
}
#pragma omp critical
© b=b+p_b;
}

assert ( b == NT*ITERS, "Value of 'b' is incorrect!!!")

}

31



Parallel construct and the reduction mechanism

The reduction clause

#pragma omp parallel reduction (operator:list)

{structured-block}

Applying it to previous example (data-sharing attribute)

#include <omp.h>
void main (void)
{

intb=0, NT=2;

omp_set_num_threads(NT);

#pragma omp parallel reduction(+:b)

for (int i = 0; i<ITERS; i++) {

b=b+1;
}
assert ( b == NT*ITERS, "Value of 'b' is incorrect!!!")

}

the compiler creates a private copy that is
properly initialized (identity)
the compiler ensures that the shared

variable is properly (and safely) updated
with all partial results

valid operatorsare:+, -, *, |, |1,
&, &&, ~, min, max

but we can also specify user-defined
reductions

This doesn’t mean that all data races are solved with reduction!!!

Parallel programming with OpenMP
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Data environment: what is the default?

Pre-determined data-sharing attributes

— threadprivate variables are threadprivate

— dynamic storage duration objects are shared (malloc, new,...)
— static data members are shared

— variables declared inside the construct
» static storage duration variables are shared
» automatic storage duration variables are private

— the loop iteration variable(s)...

Explicit data-sharing clauses (shared, private, firstprivate,...)

— If default clause present, what the clause says
» hone means that the compiler will issue an error if the attribute is not explicitly set
by the programmer (very useful!!!)

Implicit data-sharing rules, depends on the construct
— For the parallel region the default is shared
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Default data-sharing attributes (in practice)

Data-sharing attribute for each variable referenced in parallel?

inta;
void foo (int b)) {
int c;
#pragma omp parallel
{
intd;
a = <expr>;
b = <expr>;
C = <expr>;
d = <expr>;
}
}

Parallel programming with OpenMP

— default(none) may help when you are not sure
of understand the default

(=
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Summary: OpenMP fundamentals

OpenMP constructs: parallel, master and critical
— fork-join model: the parallel region - team of threads
— how to replicate and (manually) distribute work among threads

#pragma omp parallel
{
do_work_1();
do_work_2();
}

#pragma omp parallel
{
int id = omp_get_thread_num();

if (id==0) do_work_1();
if (id==1 ]| NT < 2) do_work_2();
}

#pragma omp parallel
{
intid = < expr >, nt = < expr >;
int Ib = id * (SIZE/nt);
int ub = (id+1)*(SIZE/nt) + ( (id==nt-1)? (SIZE%nt): 0 );
for (inti=Ib;i<ub;i++) A[i]=0;
}

— restrictions inside the parallel region: master and critical constructs

The data environment: data sharing clauses

— scoping variables inside a construct: private and shared

— data sharing attribute rules: pre-determined, explicit and implicit determined
— the data race problem: no controlled access on shared variables

— using reduction variables: partial results reduced into original variable

Parallel programming with OpenMP
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Thank you!

For further information please visit/contact
http://www.linkedin.com/in/xteruel
Xavier.teruel@bsc.es
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