WWW.bsc.es

Barcelona
- Supercomputing
Center
Centro Nacional de Supercomputacion

OpenMP Fundamentals

Fork-join model and
data environment

Xavier Teruel and Xavier Martorell

Agenda: OpenMP Fundamentals u-

OpenMP brief introduction
— overview, a bit of history, main components, execution model, memory
model, language syntax

The fork-join model

— creating parallel regions: the parallel construct

— manually distributing work among threads

— sequential code inside the parallel region: the master construct

Data environment
— data-sharing attributes: private and shared data

— data races when sharing variables and critical sections
— data-sharing rules, default attributes in the data environment

Parallel programming with OpenMP 2

OpenMP overview (=

Parallel Programming Model
— (initially) Designed for shared memory parallel computers
» single address space across the host memory system
— But now it also includes multi-device architectures (GPUs, Accelerators,...)

» it may imply additional (per device) address spaces
» support of data mapping from/to each address space

Maintained by the Architecture Review Board (ARB)

— Permanents members: AMD, ARM, Cray, Fujitsu, HP, IBM, Intel, Micron,
NEC, NVIDIA, Oracle, Red Hat and Texas Instruments

— Auxiliary members: ANL, LLNL, BSC, cOMPunity, EPCC, LANL, LBNL,
NASA, ORNL, RWTH Aachen University, SNL, TACC and UH

Supported by most compiler vendors
— Intel, IBM, PGI, Tl, Sun, Cray, Fujitsu, MS, HP, GCC,...

Parallel programming with OpenMP

History of the OpenMP specification

A mature parallel programming model (more than 20 years oId)
Complex to face the whole (latest) specification

300
,s | M Fortran * Number of “normative pages” per
B C/C++ OpenMP specification release
200 1 @ Common
150
100 I

NIE NN I
0 - T T T T T T

EE@WWWWWEWWWWEMEMEME
10 101120 20 2.5, 3.0 3.1, 40 45
! 1 !

Worksharings Tasking Accelerators

Parallel programming with OpenMP

OpenMP components

OpenMP Directives: OpenMP API: OpenMP
code annotation functions and routines Environment Variables

Execution model

Based on the fork-join paradigm
— a thread team is a set of threads which co-operate on a task

— the

is responsible for coordinating the team
— usually running one thread per processor (but could be more / or less)

— different threads may follow different control flows

Parallel programming with OpenMP

Sequential Parts

Nested
Parallel
Region

_

Parallel Regions

@

Memory model

A relaxed-consistency memory model

P, | P; [P, | Ps | Po | P; | Ps
— different threads may see different values for the
same (shared) variable - not consistent §§ §§‘ §§ §§ §§ §.§_ §§ §§

— consistency is only guaranteed at specific points nlnnln
@ @

» explicit points: the flush directive
» implicit points: other directives

— luckily, the implicit points are usually enough

HOST MEMORY

The operation enforcing consistency is called the flush operation

— all previous read and writes by this thread have been completed

— all these changes are visible to all other threads

— they are also known as fences or memory barriers

— In the example: At moment (1) P2 has read the variable A from memory and
it has modified it, then at moment (2) P6 wants to read variable A.

Parallel programming with OpenMP 7

OpenMP (directive) syntax

In Fortran language

— through a specially formatted comment
|sentinel directive-name [clause[[,] clause]...]
— where sentinel is one of

» ISOMP or CSOMP or *$OMP in fixed format
» ISOMP in free format

— API runtime services
» omp_lib module contains the subroutine and function definitions
In C/C++ language
— using compiler directives™
|#pragma omp directive-name [clause[[,] clause]...]

— API runtime services
» omp.h contains the API prototypes and data types definitions

* directives are ignored if compiler does not recognize OpenMP
Parallel programming with OpenMP 8

The structured block

Most directives apply to a structured block:

#pragma omp directive-name [clause[[,] clause]...]
structured-block

— block of one or more statements with one entry point / one exit point
» i.e. branching in or out is not allowed
» terminating the program is allowed (abort/exit)

#pragma omp directive-name clausel(...) clause2(...) ‘ #pragma omp directive-name clausel(...) clause2(...)
{ for (inti=0; i< SIZE; i++) {
set_of instructions (no branch in/out); ‘ Ali]l=0;
} }
#pragma omp directive-name clausel(...) clause2(...) ‘ #pragma omp directive-name clausel(...) clause2(...)
{ “orﬁnti=0;i<SEEﬂ++){
set_of instructions; ‘ Ali]l=0;
if (expr) exit(0); ‘ if (i == INDEX) break; x
} }

Parallel programming with OpenMP 9

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

The Fork-Join Model

Parallel programming with OpenMP

The parallel construct

Creating a parallel region
— always attached to a structured block

#pragma omp parallel [clause[[,] clause]...]
{structured-block}

Where clause:

— num_threads (expression)
— if (expression)

— shared (var-list)

— private (var-list)

— firstprivate (var-list)

— default (dtype)

— reduction (var-list)

Parallel programming with OpenMP

11

Specifying the number of threads

The maximum number of threads is controlled by

— an internal control variable (ICV) called nthreads-var
» the OpenMP API nthreads-var setter

void omp_set_num_threads (int value); // subsequent parallel region

» the OpenMP API nthreads-var getters

int omp_get_num_threads (void); // current team number of threads
int omp_get_max_threads (void); // maximum number of threads

» the OpenMP environment variable nthreads-var setter

S export OMP_NUM_THREADS=<list>
S ./myProgram

— the num_threads clause (overriding nthreads-var value)

Parallel programming with OpenMP 12

Example: creating a parallel region (1)

Creating a parallel region of 3 threads (num_threads clause)

#include <stdio.h>

void main (void)
{
#pragma omp parallel num_threads(3)

{
printf("Hello world!\n");

}
}

Creating a parallel region of 3 threads (omp_set_num_threads)

ttinclude <stdio.h>
#include <omp.h>

void main (void)

{
omp_set_num_threads(3);
#pragma omp parallel

{
printf("Hello world!\n");

}
}

Parallel programming with OpenMP

S gcc -fopenmp myHello.c -o myHello

S ./myHello
Hello world!
Hello world!
Hello world!

S gcc -fopenmp myHello.c -o myHello
S ./myHello
Hello world!
Hello world!

Hello world!

13

Exa‘le: crea.t‘i;ﬁ'é a parallel region (3)

But still more useful Is to use the environment variable

#include <stdio.h>
#include <omp.h>

void main (void)

{

#pragma omp parallel

{
printf("Hello world...\n");

}

#pragma omp parallel

{
printf("...and godbye!\n");

}

Parallel programming with OpenMP

S gec -fopenmp myHello.c -o myHello
S OMP_NUM_THREADS=2 ./myHello
Hello world...

Hello world...

...and goodbye!

...and goodbye!

$ OMP_NUM_THREADS=3 ./myHello
Hello world...

Hello world...
Hello world...
...and goodbye!
...and goodbye!
...and goodbye!

14

Replui_c;_éte work inside the parallel region
When two “blocks of code” may run in parallel...

#include <Stdi0.h> s t|me /myProgram
4 mai ” real Om4.003s
}/OI main (void) user 0m0.000s
do_work_1(); sys 0mO0.000s
do_work_2();
} do work 1() do_work 2()
T

... we just include them within a parallel region (replicate)

#include <stdio.h>
#include <omp.h>
void main (void)

S time ./myProgram
real 0m4.104s

{ user 0m0.000s
#pragma omp parallel num_threads(2) sys 0mO0.000s
{
do_work_1(); do_work 1() do_work_2()
do_work_2(); kg 5
) . o
j " I

do work 1() do work 2()

Parallel programming with OpenMP 15

ldentifying threads inside the parallel region
Inside a parallel region each thread has its own identifier

int omp_get_thread_num (void); // get the identification number for the current thread/team

— from 0 to N-1 (where N is the number of threads of the team)
— master thread is always identified by O (zero)
— routine returns 0 (zero) if called outside a parallel region

Example using the thread identifier

 #include <stdio.h>

 #include <omp.h>

' void main (void)

 {

| #pragma omp parallel num_threads(4)

| {

~intid = omp_get_thread_num();

| printf("Hello world! | am the thread %d.\n" id);
|}
 }

Parallel programming with OpenMP

S ./myThreadld

Hello world! | am the thread 2.
Hello world! | am the thread 1.
Hello world! | am the thread 0.
Hello world! | am the thread 3.

16

Distribute work inside the parallel region (1) ©
When two “blocks of code” may run in parallel...

#include <stdio.h> S time ./myProgram
o y real 0m4.003s
}'0' el user 0m0.000s

do_work_1();

do_work_2();
} do work 1() do_work 2()

... we can use the thread identifier to distribute work

#tinclude <stdio.h>

#include <omp.h> $ time ./myProgram

void main (void) real 0m2.604s
{ user 0m0.000s
?pragma omp parallel num_threads(2) sys 0mO0.000s

intid = omp_get_thread_num();
if (id==0)do_work_1();
if (id==1)do_work_2();
}
}

do_work_2()

Parallel programming with OpenMP 17

Distribute work inside the parallel region (2)

Thread identifier must be carefully used
— Rely on the number of threads is never a good idea
— OpenMP offers other mechanisms to distribute work

The following example is actually wrong

#include <stdio.h>
#include <omp.h>
void main (void)
{
#pragma omp parallel
{
intid = omp_get_thread_num();
if (id==0)do_work_1();
if (id==1)do_work_2();
}

}

Parallel programming with OpenMP

S export
S time ./myProgram

real 0m2.604s
user 0m0.000s
sys 0m0.000s

do work 1“

(=

18

Distribute work inside the parallel region (3)
Workaround to the unassigned work problem

#pragma omp parallel

|
| {

- intid = omp_get_thread_num();

- if(id==0)do_work_1();

- if(id==1 || omp_get_num_threads() < 2) do_work_2();
|}

But still non-optimal solution
— Think on more than 2 sections?

WARNING!!!

Don’t try this at home*

* But you can use it during this tutorial

Parallel programming with OpenMP

S export OMP_NUM_THREADS=1
S time ./myProgram

real 0m4.003s

user 0m0.000s

sys 0m0.000s

do_work_1() do_work_2()

$ export OMP_NUM_THREADS=2
S time ./myProgram

real 0m2.604s
user 0m0.000s
sys 0mO0.000s

do work 1“

do_work_2()

19

#include <stdio.h>
#include <omp.h>
void main (void) {
#pragma omp parallel num_threads(2)
{
do_work_1();
do_work_2();
}
}

Distribute work (threads

ttinclude <stdio.h>
#include <omp.h>
void main (void) {
#pragma omp parallel num_threads(2)
{
intid = omp_get_thread_num();
if (id ==0)do_work_1();
if (id == 1) do_work_2();
}
}

Parallel programming with OpenMP

Summ_éry: replicate vs distribute work
Replicate work (all threads execute the same work)

S time ./myProgram
real 0m2.604s

user 0m0.000s
sys 0m0.000s

do_work 1() do_work_2()

do work 1() do work 2()

“share” the amount of work)

S time ./myProgram
real 0m2.604s

user 0m0.000s
sys 0mO0.000s

do work 1“

do_work_2()

20

Distribute loop iterations inside the parallel regior((
Parallel approach

#include <omp.h>
#define SIZE 1204
double A[SIZE];
void main (void)

{

Target: independent loop

#define SIZE 1204
double A[SIZE];
void main (void)
{
for (inti=0; i<SIZE; i++) {
Ali]=0;
}
}

— Programmer must guarantee no
dependences across loop iterations

— Compute lower bound and upper
bound for each thread (using actual
boundaries, thread id and number
of threads)

Parallel programming with OpenMP

#pragma omp parallel

{

intid = omp_get_thread_num();

int nt = omp_get_num_threads();

int Ib = id * (SIZE/nt);

int ub = (id+1)*(SIZE/nt) + ((id==nt-1)? (SIZE%nt) : 0);

for (inti=Ib; i< ub; i++) {
Ali]=0;
}
}
}

— But still non-optimal solution
» more threads than iterations
» load imbalance (iters/threads)

21

Parallel construct: the if clause
Avoids creating parallel regions Example of the if-clause usage

#pragma omp parallel if (expr) #L"Cf'ude <omp.h>
tidefine SIZE ...
{structured-block} double A[SIZE];
. \ void main (void)
— sometimes we only want to run in {
parallel under certain conditions ?"""g"‘a omp parallel if(SIZE>256)
— if expr evaluates to false parallel int id=omp_get_threadgnun;0(:)
. int nt = omp_get_num_threads();
construct will only use 1 thread it b = (ST
— still creates a new team and data e = (id+1)*(SIZE/nt)+{({id==nt-1)2(SIZE%nt):0);
) or (inti=Ib; i< ub;i++) {
environment ALil=0;
}
}
}

Parallel programming with OpenMP 22

Master construct

Only the master thread executes a given region

#fpragma omp master
{structured-block}

— the master construct has no clauses

Master construct's semantics

— other threads do not execute the structured block
— there is no implicit barrier at the entry

— there is no implicit barrier at the end

#pragma omp parallel num_threads(2)

{

intid = omp_get_thread_num(); do ()
#pragma omp master o do_work,2()__
do_work_1(); // execute with one thread ., 4
do_work_2(id); // execute with N threads do_work_2()

}

Parallel programming with OpenMP 23

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Data Environment

Parallel programming with OpenMP

OpenMP constructs and data environment se

Scoping variables in an OpenMP construct (ownership)
— determine the scope for each variable: shared and private

— shared data can be accessed by all the threads

— private data can only be accessed by the owner thread

‘ #include <stdio.h> S _/myProgram

#include <omp.h> Hello world! | am thread 2. | like 3.141593.

Couble Pl ; Hello world! | am thread 0. | like 3.141593.

| Hello world! | am thread 1. | like 3.141593.

 void main (void) Hello world! | am thread 3. | like 3.141593.

{ intid =0;

~ #pragma omp parallel num_threads(4) shared(PlI) private(id) e 2

| — T
id = omp_get_thread_num(); Cu—

|
| printf("Hello world! | am thread %d. | like %f.\n", id, Pl1);
o}

\

.

Parallel programming with OpenMP 25

Privatizing variables inside the construct @

The variable inside the construct is a new variable

— the new variables have the same type than original variable

— in parallel construct it means all threads have a different variable

— they can be accessed without any kind of synchronization

The private (storage) and firstprivate (storage + copy) clauses
#pragma omp parallel {private|firstprivate} (list)

{structured-block}

— private variables have undefined value when starting the block
— firstprivate variables are initialized to the value of the original one

double Pl =3.14159265359;

#pragma omp parallel private(PI)

{

Pl = <expr>;

}
printf("Pl = %f \n", P1);

double PI =3.14159265359;

#pragma omp parallel firstprivate(PI)

{
<lvalue> = f(P1); // including PI = f(P1);

}
printf("Pl = %f \n", P1);

Parallel programming with OpenMP

26

The threadprivate directive

(=

Allows to create a per-thread copy of “global” variables

‘ #fpragma omp threadprivate (var-list)

threadprivate can be applied to:
— global or static variables

— class static data members (C++)
The threadprivate storage persist
— but persistence is complex

#include <stdio.h>
char buffer[SIZE];
#pragma omp threadprivate(buffer

void main (void) Now buffer have a per-
{ thread copy (~private)
#pragma omp parallel

{

buffer = <expr>;

Using static variable:

#include <stdio.h>

Now foo() can be called
by multiple threads at the

char* foo(void)

{

same time

static char buffer[SIZE];
#pragma omp threadprivate(buffer)

return buffer;
} Returns correct
address to caller
void main (void)

{

#pragma omp parallel

{

char *a =foo();

-
}

Parallel programming with OpenMP

27

Sharing variables inside the parallel region (1)

The variable is “the same” outside/inside the construct
— in parallel construct it means all threads see the same variable (address)
— but not necessarily the same value (consistency issue)

— usually need some kind of synchronization to update them correctly
» synchronization: mutual exclusion or atomic updates
» synchronization also guarantees consistency points

#include <stdio.h> — all threads read same variable

double PI = 3.14159265359; — after the parallel region variable
L modifications still are visible

void main (void)
intid =0;

{ $./myProgram
PI =3.000000;
#pragma omp parallel num_threads(4) shared(Pl)

{
Pl =3;

}
printf("Pl = %f \n", PI);

Parallel programming with OpenMP 28

Sharing variables inside the parallel region (2)
Modifying shared variables (‘a’ and ‘b’) inside the parallel region

s O g — variables ‘NT’ & ‘ITERS’ have no data race
#include <assert.h>
il e — variable ‘@’ has no data race
inta=0,b=0, TERS = 100; — variable ‘b’ may give incorrect results
void main (void) .
{ — abit of assembly...b=b +1 = load,
#pragma omp parallel num_threads(NT) shared(a, b, NT, ITERS)
{ — An example of two ‘b=b+1’ executed
#pragma omp master
T TERe: concurrently: b=5, ((b+1)+1)
Reg-1 Thread-1 b Thread-2 Reg-2
for (int i = 0; i<ITERS; i++) {
b=b+1; r1=5 load b, r1 @ ri=xX
} ri=6 increment rl 5 ri=X
} rl=6 5 load b, r1 r1=5
assert (a == NT*ITERS, "Value of 'a' is incorrect!!!") // correct B B
assert (b == NT*ITERS, "Value of 'b" is incorrect!!!") // incorrect ri=e storerl, b 6 r1=5
} rl=6 6 increment rl rl=6
rl=6 @ storerl, b r1=6

Parallel programming with OpenMP 29

The critical construct
Mutual exclusion regions

#pragma omp critical [(name) [hint(hint-expression)]]
{structured-block}

Critical construct’'s semantics

— only one thread can be executing the region at any given time

— by default all critical regions are synchronized all-to-all

— if you provide a name only those regions with the same name synchronize

#include <omp.h> “‘.—.—.—.00
void main (void) :,. .:‘_
{ —l——m
intb=0,NT=4,ITERS = 100; . .
— in this example we would get a
#pragma omp parallel num_threads(NT) shared(b, ITERS) extreme |y poor performa nce.:

o= TR — almost all the code has been
pragma omp critical

b=b+1; serialized!!!
} — ... but this is a well-know pattern

assert (b == NT*ITERS, "Value of 'b" is incorrect!!!"); // correct

}

Parallel programming with OpenMP 30

The reduction pattern and the manual approach (
All threads are accumulating values into a single variable

#include <omp.h>

void main (void) {
intb=0, NT = 2;
omp_set_num_threads(NT);
#pragma omp parallel shared

{
for (int i = 0; i<ITERS; i++) {

Data Race!!!

assert (b == NT*ITERS, "Value of 'b' is incorrect!!!")
}

The manual approach:

1. create-initialize a per-thread copy

2. accumulate partial results using this
private copy (no synchro)

3. accumulate each partial results into

the original variable (critical)
Parallel programming with OpenMP

solution

#include <omp.h>

void main (void)

{
intb=0, NT=2;
omp_set_num_threads(NT);
#pragma omp parallel shared(b, NT)
{

@ intp_b=0;

for (int i = 0; i<ITERS; i++) {
© pb=pb+];
}
#pragma omp critical
© b=b+p_b;
}

assert (b == NT*ITERS, "Value of 'b' is incorrect!!!")

}

31

Parallel construct and the reduction mechanism

The reduction clause

#pragma omp parallel reduction (operator:list)

{structured-block}

Applying it to previous example (data-sharing attribute)

#include <omp.h>
void main (void)
{

intb=0, NT=2;

omp_set_num_threads(NT);

#pragma omp parallel reduction(+:b)

for (int i = 0; i<ITERS; i++) {

b=b+1;
}
assert (b == NT*ITERS, "Value of 'b' is incorrect!!!")

}

the compiler creates a private copy that is
properly initialized (identity)
the compiler ensures that the shared

variable is properly (and safely) updated
with all partial results

valid operatorsare:+, -, *, |, |1,
&, &&, ~, min, max

but we can also specify user-defined
reductions

This doesn’t mean that all data races are solved with reduction!!!

Parallel programming with OpenMP

32

Data environment: what is the default?

Pre-determined data-sharing attributes

— threadprivate variables are threadprivate

— dynamic storage duration objects are shared (malloc, new,...)
— static data members are shared

— variables declared inside the construct
» static storage duration variables are shared
» automatic storage duration variables are private

— the loop iteration variable(s)...

Explicit data-sharing clauses (shared, private, firstprivate,...)

— If default clause present, what the clause says
» hone means that the compiler will issue an error if the attribute is not explicitly set
by the programmer (very useful!!!)

Implicit data-sharing rules, depends on the construct
— For the parallel region the default is shared

Parallel programming with OpenMP 33

Default data-sharing attributes (in practice)

Data-sharing attribute for each variable referenced in parallel?

inta;
void foo (int b)) {
int c;
#pragma omp parallel
{
intd;
a = <expr>;
b = <expr>;
C = <expr>;
d = <expr>;
}
}

Parallel programming with OpenMP

— default(none) may help when you are not sure
of understand the default

(=

34

Summary: OpenMP fundamentals

OpenMP constructs: parallel, master and critical
— fork-join model: the parallel region - team of threads
— how to replicate and (manually) distribute work among threads

#pragma omp parallel
{
do_work_1();
do_work_2();
}

#pragma omp parallel
{
int id = omp_get_thread_num();

if (id==0) do_work_1();
if (id==1]| NT < 2) do_work_2();
}

#pragma omp parallel
{
intid = < expr >, nt = < expr >;
int Ib = id * (SIZE/nt);
int ub = (id+1)*(SIZE/nt) + ((id==nt-1)? (SIZE%nt): 0);
for (inti=Ib;i<ub;i++) A[i]=0;
}

— restrictions inside the parallel region: master and critical constructs

The data environment: data sharing clauses

— scoping variables inside a construct: private and shared

— data sharing attribute rules: pre-determined, explicit and implicit determined
— the data race problem: no controlled access on shared variables

— using reduction variables: partial results reduced into original variable

Parallel programming with OpenMP

35

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial and
research purposes. The User may not commercially use the material, unless has been granted prior written consent by
the Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of
identification or disclaimers as they appear. For further details, please contact BSC-CNS.

Parallel programming with OpenMP

WWW.bsc.es

Barcelona

- Supercomputing

Center

Centro Nacional de Supercomputacion

Thank you!

For further information please visit/contact
http://www.linkedin.com/in/xteruel
Xavier.teruel@bsc.es

Parallel programming with OpenMP

