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Parallel Programming with OpenMP 

Xavier Teruel & Xavier Martorell 

OpenMP Worksharings 

Distributing the work  

among threads 



Worksharing introduction 

Worksharing constructs divide the execution of a code region among the 

threads of a team 

– threads cooperate to do some work (i.e. to share some work) 

– better way to split work than using thread-ids 

– lower overhead than using tasks  less flexible 

In OpenMP, there are four worksharing constructs: 

– single construct 

– sections construct 

– loop construct 

– workshare construct (only Fortran) 

Restriction: worksharings cannot be nested 
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The single construct 

 

 

 

 

 

Where clause: 

– private(list)  explained  

– firstprivate(list)  explained  

– nowait 

– copyprivate(list) 

Only one thread of the team 

executes the structured block 

Very useful in I/O operations 

#pragma omp single [clause[[,] clause]...] 

{structured-block} 

#include <stdio.h> 

 

int main ( void ) 

{ 

   #pragma omp parallel 

   { 

      do_parallel_work_1(); 

      #pragma omp single 

      { 

         printf ("Hello world!\n" ) ; 

      } 

      do_parallel_work_2(); 

   } 

} 

This program writes just 

one “Hello world!” 

 

 

 

 

 

Single construct example 

Serializing (1-thread) a portion of the parallel region 

– always attached to a structured block 
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Implicit barrier (single) 

A implicit barrier at the end of the construct 

 

 

 

 

 

 

#pragma omp parallel 

{ 

   do_parallel_work_1(); 

   #pragma omp single 

   { 

      printf ("Hello world!\n" ) ; 

   } 

   do_parallel_work_2(); 

} 

 do_parallel_work_1(); 

 do_parallel_work_2(); 

printf(); 

#pragma omp single nowait 

{structured-block} 

   . . . 

   #pragma omp single nowait 

   printf ("Hello world!\n" ) ; 

   . . . 

 do_parallel_work_1(); 

 do_parallel_work_2(); 

printf(); 

The nowait clause 

 

 

 

– eliminates the barrier at the end of the construct 
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Copying variables from/to the construct (broadcasting) 

The copyprivate clause 

 

 

 

#pragma omp single copyprivate(list) 

{structured-block} 

Copyprivate description 

– support the broadcast of data 

values to other threads in the 

team 

– apply only to private, firstprivate 

or threadprivate variables 

– occurs after the execution of the 

structured block… 

– … but before of the threads have 

left the barrier (at the end of the 

construct) 

 

 

#include <stdio.h> 

 

void main (void) 

{ 

   float x, y; 

   #pragma omp parallel private(x,y) 

   { 

       . . .  

      #pragma omp single copyprivate(x,y) 

      { 

         scanf("%f %f", &x, &y); 

      } 

      . . . 

   } 

} 

At this point variables ‘x’ and 

‘y’ have been broadcasted 

Copyprivate example (input data) 
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Single construct vs master construct 

In both cases the structured block is executed by just one thread 

 

 

 

The single construct has more overhead (additional synchronization) 

– which thread has captured the token 

– and the implicit barrier at the end 

… but also is more flexible: any thread may execute the block 

The master construct has less overhead 

– it is just a test (if thread-id == 0) 

– it has no implicit barrier at the end 

… but also is more restrictive: only master thread may execute the block 

 

Rule of thumb: if all threads reach the structured block at the same time 

use master, otherwise use single 

#pragma omp single 

{structured-block} 

#pragma omp master 

{structured-block} 
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The sections construct 

Set of structured blocks distributed among threads 

 

 
 

 

 

 

 

 

Where clause: 

– private(list)  already explained in previous constructs 

– firstprivate(list)  already explained in previous constructs 

– lastprivate(list) 

– reduction(operator: variable-list)  already explained in previous constructs 

– nowait  already explained in previous constructs 

#pragma omp sections [clause[[,] clause]...] 

{ 

   [#pragma omp section] 

      {structured-block} 

   [#pragma omp section 

      {structured-block}] 

   ... 

} 
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The sections construct: description (1) 

Building the syntaxis of the sections construct 

– each (selected) structured block is preceded by a section directive 

– only in the first structured block the section directive is optional 

– any section directive must be lexically enclosed in a sections construct 

Section construct example 

#include "synthetic.h“ 

 

void main (void) 

{ 

   #pragma omp parallel 

   #pragma omp sections 

   { 

      #pragma omp section 

      synthetic_phase1(); 

      #pragma omp section 

      synthetic_phase2(); 

      #pragma omp section 

      synthetic_phase3(); 

   } 

} 

#include "synthetic.h“ 

 

void synthetic_phase2() 

{ 

   #pragma omp section 

   synthetic_phase2_1(); 

} 

Only in the first structured 

block the section directive is 

optional 
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The sections construct: description (2) 

Executing the sections construct 

– assignment blocks/threads is implementation defined 

– if no ‘nowait’ clause is present there is an implicit barrier at the end 

It can be combined with the parallel construct 

 

 

 

Using the “parallel sections” combined construct 

 

#pragma omp parallel sections [clause[[,] clause]...] 

{structured-blocks: sections} 

void main (void) 

{ 

   #pragma omp parallel sections 

   { 

      synthetic_phase1(); 

      #pragma omp section 

      synthetic_phase2(); 

      #pragma omp section 

      synthetic_phase3(); 

   } 

} 

 synthetic_phase2(); 

 synthetic_phase3(); 

 synthetic_phase1(); 
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Privatizing variables inside the construct (lastprivate) 

The variable inside the construct is a new variable 

– the new variables have the same type than original variable 

– in any worksharing construct it means all threads have a different variable 

– they can be accessed without any kind of synchronization 

Already discussed privatization clauses 

– private variables have undefined value when starting the block 

– firstprivate variables are initialized to the value of the original one 

The lastprivate clause 

 

 

– lastprivate variables (by default) have undefined value when starting the block 

– the value of the variable in the lexically last section of the set of sections is 

copied back to the original variable 

– a variable can be both firstprivate and lastprivate 

#pragma omp sections lastprivate(list) 

{structured-blocks: sections} 
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A lastprivate example (with sections construct) 

Recovering the sequential consistency with the lastprivate clause 

 #include <stdio.h> 

void main (void) { 

   int v = 0; 

   #pragma omp parallel sections lastprivate(v) 

   {  

      #pragma omp section 

      { 

          v = 1; 

          synthetic_phase( v ); 

      } 

      #pragma omp section 

      { 

          v = 2; 

          synthetic_phase( v ); 

      } 

      #pragma omp section 

      { 

          v = 3; 

          synthetic_phase( v ); 

      } 

   } 

   printf("v = %d\n", v); 

} 

 synthetic_phase(2); 

 synthetic_phase(3); 

 synthetic_phase(1); 

#include "synthetic.h" 

 

void synthetic_phase( int  s ) { 

   switch case(s) 

   { 

      case 1: 

         matrix_multiply(); 

         break; 

      . . .  

      default: 

         exit(NOT_IMPLEMENTED); 

   } 

}  

The lexically last 

section determines the 

value of the original 

variable 
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Some performance results (synthetic) 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 3 4 5 6 7 8

S
p

e
e

d
-u

p
 

Threads 

Synthetic (sections) 

Threads Total Time Speed-up 

1 4,454202 1,00 

2 2,562986 1,74 

3 1,940174 2,30 

4 1,927576 2,31 

5 1,934126 2,30 

6 1,929955 2,31 

7 1,927792 2,31 

8 1,941034 2,29 

S 4,452954 1,00 

Computing speed-up for the synthetic benchmark (using sections)  

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑞

𝑇𝑝
 

Time Results 
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The optimal amount of parallelism 

Parallel decomposition (choosing the entity’s granularity) 

– Where entity may be a (section) structured block, or a (loop) chunk, or a task 

– Parallelization may occur at different application levels 

• Higher levels  coarse grain granularity 

– Small synchronization overhead 

– Load imbalance (including lack of parallelism) 

• Deeper levels  fine grain granularity 

– Greater potential for parallelism (and hence speed-up) 

– More synchronization overhead 

– The optimal decission is a trade off (but sometimes is difficult to find) 

Parallel programming: OpenMP 

  



The loop construct 

Distributing a loop among threads 

– always attached to a for loop (do in Fortran) 

 

 

Where clause: 

– private(list)  already explained in previous constructs 

– firstprivate(list)  already explained in previous constructs 

– lastprivate(list)  already explained, but… 

– reduction(operator: list)  already explained, but… 

– schedule(schedule-kind) 

– nowait  already explained in previous constructs 

– collapse(n) 

– ordered 

#pragma omp for [clause[[,] clause]...] 

{structured-block: loop} 
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The loop construct: description (1) 

The iterations of the loop(s) associated to the construct are divided among 

the threads of the team 

Parallel loop requierements 

– loop iterations must be independent (user’s responsibility) 

– loops must follow a form that allows to compute the number of iterations 

 

 

 

– valid data types for induction variables are: integer types, pointers and random 

access iterators (in C++) 

#pragma omp for [clause[[,] clause]...] 

for ( init_expr; test_expr; inc_expr ) 

Parallel programming: OpenMP 



The loop construct: description (2) 

It can be combined with the parallel construct 

 

 

Matrix initialization (using the loop construct) 

void foo ( int *m, int N, int M) 

{ 

   int i, j ; 

#pragma omp parallel for private( j ) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

} 

New created threads 

cooperate to execute 

all the iterations of the loop 

The i variable is 

automatically privatized 

The j variable must be 

manually privatized 

thread-0 

thread-1 

thread-2 

thread-3 

N 

M 

#pragma omp parallel for [clause[[,] clause]...] 

{structured-block: loop} 

… but other distributions 

are also possible 
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Loop construct and the lastprivate clause 

A lastprivate example 

 void main(void)  

{ 

   int i; 

 

   #pragma omp parallel 

   { 

      #pragma omp for lastprivate(i) 

      for ( i = 0; i < n-1; i++ ) 

      { 

         a[i] = b[i] + b[i+1]; 

      } 

   } 

 

   a[ i ] = b[ i ]; /* i == n-1 here */ 

}  

The logical last iteration 

determines the value of 

the original variable 

The lastprivate clause 
 

 

 

– lastprivate variables (by default) 

have undefined value when 

starting the block 

– the value of the variable in the last 

logical iteration of the loop is 

copied back to the original variable 

– a variable can be both firstprivate 

and lastprivate 

#pragma omp for lastprivate(list) 

{structured-block: loop} 
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Loop construct and the reduction clause 

All threads accumulate some values into a single variable 

 

 

 

Reduction clause example (loop construct) 

 

 

 

 

 

 

 

 

 

Using critical is not good enough (besides being error prone) 

#pragma omp for reduction(operator:list) 

{structured-block} 

– the compiler creates a private copy 

that is properly initialized (identity) 

– the compiler ensures that the shared 

variable is properly (and safely) 

updated with all partial results 

– valid operators are: +, -, *, |, 

||, &, &&, ^, min, max 

– but we can also specify user-defined 

reductions 

 

int vector_sum ( int n , int v [ n ] ) 

{ 

   int i , sum = 0; 

#pragma omp parallel for reduction ( + : sum) 

   { 

      for ( i = 0; i < n ; i ++ ) 

         sum += v [ i ] ; 

   } 

   return sum; 

} 

Private copies initialized 

to the identity 

Shared variable updated 

with all the partial results 
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Loop data environment: what is the default? 

Pre-determined data-sharing attributes 

– threadprivate variables are threadprivate 

– dynamic storage duration objects are shared (malloc, new,…) 

– static data members are shared  

– variables declared inside the construct (static  shared / automatic  private) 

– the loop iteration variable(s) in the associated for-loop(s) of a for, parallel for, 

distribute or taskloop constructs is (are) private 

– the loop iteration variable in the associated (and unique) for-loop of a simd 

construct is linear 

– the loop iteration variables in the associated (multiple) for-loops of a simd 

construct are lastprivate 

Explicit data-sharing clauses (shared, private, firstprivate,…) 

– If default clause present, what the clause says (none is very usefull!!!) 

Implicit data-sharing rules, depends on the construct 

– For the loop region the default data sharing attribute is shared 

Parallel programming: OpenMP 



The schedule clause 

The schedule clause determines which iterations are executed by each of 

the threads in the team 

 

 

 

– If no schedule clause is present then is implementation defined 

There are several possible options as schedule kind 

– static[,chunk-size] 

– dynamic[,chunk-size] 

– guided[,chunk-size] 

– auto 

– runtime 

#pragma omp for schedule(kind[,chunk-size]) 

{structured-block: loop} 

Parallel programming: OpenMP 



The loop’s schedule clause: static 

The static schedule (with no chunk-size parameter) 

– the iteration space is broken in chunks of approximately the same size 

– then these chunks are assigned to the threads in a Round-Robin fashion 

 
 

 

 

 

The static schedule (with chunk-size parameter)  interleaved 

– the iteration space is broken in chunks of size N 

– these chunks are assigned to the threads in a Round-Robin fashion 

. . . 

#pragma omp parallel for private( j ) schedule(static) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

thread-0 

thread-1 

thread-2 

thread-3 

N 

. . . 

#pragma omp parallel for private( j ) schedule(static,10) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

thread-0 
thread-1 
thread-2 
thread-3 

N thread-0 
thread-1 

thread-x+1 
thread-x 

10 iters 
10 iters 

10 iters 

. 

. 

. 
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The loop’s schedule clause: dynamic & guided 

The dynamic schedule 

– if no chunk-size is specified, default is 1. 

– threads dynamically grab iterations until all iterations have been executed 

 
 

 

 

 

The guided schedule (variant of dynamic) 

– if no chunk-size is specified, default is 1 

– chunks decreases in size as threads grab iterations (at least chunk-size) 

. . . 

#pragma omp parallel for private( j ) schedule(dynamic, 10) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

N 

10 iters 
10 iters 

10 iters 

. 

. 

. 

N%10 

. . . 

#pragma omp parallel for private( j ) schedule(guided, 10) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

N 

xx iters 

yy iters 

10 iters 

. 

. 

N%10 

thread-0 

thread-1 

thread-3 

thread-2 

thread-0 

thread-1 

thread-3 

thread-2 
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Loop’s schedulers: static vs dynamic (and guided) 

Dynamic (and guided) schedulers 

– higher overhead 

– not very good locality (usually) 

– can solve imbalance problems 

Characteristics of static schedules 

– low overhead  

– good locality (usually) 

– can have load imbalance problems 

Which scheduler should work better with a specific loop 

 

– if all threads reach the loop region at the same time 

– if all the iterations have the same weight (work) 

– if consequtive loops using the same data (e.g. matrix) 

 

– if threads may reach the loop at different times 

– if not all the iterations have the same weight (work) 

static 

dynamic (guided) 
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The schedule clause: auto & runtime 

The auto schedule (if you want to experiment) 

– in this case, the implementation is allowed to do whatever it wishes 

– do not expect much of it as of now 

 
 

 

 

 

The runtime schedule (delayed until run-time) 

– using the OMP_SCHEDULE environment variable 

– using the omp_set_schedule() API service call 

. . . 

#pragma omp parallel for private( j ) schedule(auto) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

. . . 

#pragma omp parallel for private( j ) schedule(runtime) 

   for ( i = 0; i < N; i ++ ) 

      for ( j = 0; j < M; j ++ ) 

         m[ i * N + j ] = 0; 

. . . 

 
thread-0 

thread-1 

thread-3 

thread-2 

N 

$ export OMP_SCHEDULE=static,1024 

$ ./myMatrixMultiply 

Computing matrix multiplication… 

Parallel programming: OpenMP 



Avoiding the implicit barrier (loop) 

The nowait clause: eliminates the barrier at the end of the loop 

 

 

 

This allows to overlap the execution of non-dependent loops 

#define N 1000 

void main (void) { 

   int i, a[N], b[N]; 

 

   #pragma omp parallel 

   { 

      #pragma omp for nowait 

      for ( i = 0; i < N ; i ++ ) 

         a [ i ] = 0; 

 

      #pragma omp for 

      for ( i = 0; i < N ; i ++ ) 

         b [ i ] = 0; 

   } 

} 

– independant iterations (in between 

loops)  we can overlap them 

– if same iteration space  a better 

solution would be to (manually) fuse 

the loops 

#pragma omp for nowait 

{structured-block} 

 parallel for 

parallel for 
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Avoiding the implicit barrier (loop) 

The nowait clause: eliminates the barrier at the end of the loop 

 

 

 

But also overlap the execution of “some” dependant loops 

#define N 1000 

void main (void) { 

   int i, a[N], b[N]; 

 

   #pragma omp parallel 

   { 

      #pragma omp for schedule(static) nowait 

      for ( i = 0; i < N ; i ++ ) 

         a [ i ] = 0; 

 

      #pragma omp schedule(static) for 

      for ( i = 0; i < N ; i ++ ) 

         a [ i ] = a [ i ] + foo ( i ); 

   } 

} 

– static scheduler, same iteration 

space, and dependant (on index) 

iterations (in between loops)  we 

can overlap them 

– a better solution would be to 

(manually) fuse the loops 

#pragma omp single nowait 

{structured-block} 

 parallel for 

parallel for 

Parallel programming: OpenMP 



Avoiding the implicit barrier (loop) 

The nowait clause: eliminates the barrier at the end of the loop 

 

 

 

But also overlap the execution of “some” dependant loops 

#define N 1000 

void main (void) { 

   int i, a[N], b[N]; 

 

   #pragma omp parallel 

   { 

      #pragma omp for schedule(dynamic) nowait 

      for ( i = 0; i < N ; i ++ ) 

         a [ i ] = 0; 

 

      #pragma omp for 

      for ( i = 0; i < N ; i ++ ) 

         a [ i ] = a [ i ] + foo ( i );; 

   } 

} 

– no static scheduler: same iteration 

space, and dependant (on index) 

iterations (in between loops)  NO 

• a better solution would be to 

(manually) fuse the loops 

– not the same iteration space: static 

scheduler and dependant (on index) 

iterations (in between loops)  NO 

– dependence (arbitrary in any index): 

same iteration space and static 

scheduler  NO  

#pragma omp single nowait 

{structured-block} 
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The collapse clause 

Allows to distribute work from a set of n-nested loops 

– loops must be perfectly nested (no instruction in between) 

– the nest must traverse a rectangular iteration space 

– combines both iteration spaces to create a single one 

Using the collapse clause over two loops 

#define N 1000 

#define M 4000 

 

void main (void) { 

   int i, j; 

   #pragma omp parallel 

   { 

      #pragma omp for collapse(2) 

      for ( i = 0; i < N; i ++ ) 

         for ( j = 0; j < M; j ++ ) 

            foo ( i , j ) ; 

   } 

} 

      #pragma omp for 

      for ( idx = 0; idx < (N * M); idx ++ ) 

      { 

            foo ( fi(idx) , fj(idx) ) ; 

      } 

– useful when first loop (or both) have 

only a few iterations (e.g. N = 64) 

– increase the amount of created 

parallelim 
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Synchronizing the execution 

Threads need to impose some ordering in the sequence of their actions 

– execute in a logical order certain regions 

– mutual exclusion in the execution of a given region 

– wait in a location until all other threads have reach the same location 

– wait until a given condition is acomplished 

OpenMP provides different synchronization mechanisms 

– master construct already explained in previous sessions 

– critical construct  already explained in previous sessions 

– barrier directive 

– atomic construct 

– taskwait directive  will be explained in following sessions (tasking) 

– taskgroup construct  will be explained in folowing session (tasking) 

– depend clause  will be explained in following sessions (tasking) 
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The barrier directive 

Threads cannot proceed past a barrier point until all threads reach the 

barrier and all previously generated work is completed 

 

 

– Some constructs have an implicit barrier at the end (e.g. the parallel construct) 

Synchronizing threads between two phases in a parallel region 

#pragma omp barrier 

#pragma omp parallel 

{ 

   foo (); 

   #pragma omp barrier 

   bar (); 

} 

Forces all foo()’s too 

happen before all bar()’s 

Implicit barrier 

foo() 

bar() 
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Mutual exclusion for simple read & update operations 

The atomic construct 

– special mechanism of mutual exclusion to “read & update” operations 

– only supports simple read & update expressions 

• e.g., x += 1  whole expression is protected 

• x = x - foo()  only protects the read & update part, foo() is not protected 

Usually much more efficient than a critical construct… 

… but it is not compatible with it  

 

 

 

 

 

 

An additional mechanism to fix data races 

int x =1; 

#pragma omp parallel num_threads( 2 ) 

{ 

   #pragma omp atomic 

   x++; 

} 

printf("%d\n", x ); 

Only one thread at a 

time updates x here 

Prints “3” 

int x =1; 

#pragma omp parallel num_threads( 2 ) 

{ 

   #pragma omp atomic 

   x++; 

   . . . 

   #pragma omp critical 

   x++; 

} 

printf("%d\n", x ); 

May execute an atomic 

and  a critical block at 

the same time 

Prints “?” 

Parallel programming: OpenMP 



Summary: OpenMP worksharings 

OpenMP worksharings: single, section, loop and workshare 

– distribute work among threads withoud using thread-id (neither num-threads) 

– parallel decomposition trade off: coarse and fine granularity 

– control how the work is distribute (loop) using the schedule clause 

– new ways to control the data environment in these news constructs 

Additional synchronization constructs 

– the barrier directive synchronize threads 

– the atomic directive  other mechanism to fix data races 

 

Parallel programming: OpenMP 
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