
www.bsc.es

Parallel Programming with OpenMP

Xavier Teruel & Xavier Martorell

OpenMP Worksharings

Distributing the work

among threads

Worksharing introduction

Worksharing constructs divide the execution of a code region among the

threads of a team

– threads cooperate to do some work (i.e. to share some work)

– better way to split work than using thread-ids

– lower overhead than using tasks  less flexible

In OpenMP, there are four worksharing constructs:

– single construct

– sections construct

– loop construct

– workshare construct (only Fortran)

Restriction: worksharings cannot be nested

Parallel programming: OpenMP

The single construct

Where clause:

– private(list)  explained

– firstprivate(list)  explained

– nowait

– copyprivate(list)

Only one thread of the team

executes the structured block

Very useful in I/O operations

#pragma omp single [clause[[,] clause]...]

{structured-block}

#include <stdio.h>

int main (void)

{

 #pragma omp parallel

 {

 do_parallel_work_1();

 #pragma omp single

 {

 printf ("Hello world!\n") ;

 }

 do_parallel_work_2();

 }

}

This program writes just

one “Hello world!”

Single construct example

Serializing (1-thread) a portion of the parallel region

– always attached to a structured block

Parallel programming: OpenMP

Implicit barrier (single)

A implicit barrier at the end of the construct

#pragma omp parallel

{

 do_parallel_work_1();

 #pragma omp single

 {

 printf ("Hello world!\n") ;

 }

 do_parallel_work_2();

}

 do_parallel_work_1();

 do_parallel_work_2();

printf();

#pragma omp single nowait

{structured-block}

 . . .

 #pragma omp single nowait

 printf ("Hello world!\n") ;

 . . .

 do_parallel_work_1();

 do_parallel_work_2();

printf();

The nowait clause

– eliminates the barrier at the end of the construct

Parallel programming: OpenMP

Copying variables from/to the construct (broadcasting)

The copyprivate clause

#pragma omp single copyprivate(list)

{structured-block}

Copyprivate description

– support the broadcast of data

values to other threads in the

team

– apply only to private, firstprivate

or threadprivate variables

– occurs after the execution of the

structured block…

– … but before of the threads have

left the barrier (at the end of the

construct)

#include <stdio.h>

void main (void)

{

 float x, y;

 #pragma omp parallel private(x,y)

 {

 . . .

 #pragma omp single copyprivate(x,y)

 {

 scanf("%f %f", &x, &y);

 }

 . . .

 }

}

At this point variables ‘x’ and

‘y’ have been broadcasted

Copyprivate example (input data)

Parallel programming: OpenMP

Single construct vs master construct

In both cases the structured block is executed by just one thread

The single construct has more overhead (additional synchronization)

– which thread has captured the token

– and the implicit barrier at the end

… but also is more flexible: any thread may execute the block

The master construct has less overhead

– it is just a test (if thread-id == 0)

– it has no implicit barrier at the end

… but also is more restrictive: only master thread may execute the block

Rule of thumb: if all threads reach the structured block at the same time

use master, otherwise use single

#pragma omp single

{structured-block}

#pragma omp master

{structured-block}

Parallel programming: OpenMP

The sections construct

Set of structured blocks distributed among threads

Where clause:

– private(list)  already explained in previous constructs

– firstprivate(list)  already explained in previous constructs

– lastprivate(list)

– reduction(operator: variable-list)  already explained in previous constructs

– nowait  already explained in previous constructs

#pragma omp sections [clause[[,] clause]...]

{

 [#pragma omp section]

 {structured-block}

 [#pragma omp section

 {structured-block}]

 ...

}

Parallel programming: OpenMP

The sections construct: description (1)

Building the syntaxis of the sections construct

– each (selected) structured block is preceded by a section directive

– only in the first structured block the section directive is optional

– any section directive must be lexically enclosed in a sections construct

Section construct example

#include "synthetic.h“

void main (void)

{

 #pragma omp parallel

 #pragma omp sections

 {

 #pragma omp section

 synthetic_phase1();

 #pragma omp section

 synthetic_phase2();

 #pragma omp section

 synthetic_phase3();

 }

}

#include "synthetic.h“

void synthetic_phase2()

{

 #pragma omp section

 synthetic_phase2_1();

}

Only in the first structured

block the section directive is

optional

Parallel programming: OpenMP

The sections construct: description (2)

Executing the sections construct

– assignment blocks/threads is implementation defined

– if no ‘nowait’ clause is present there is an implicit barrier at the end

It can be combined with the parallel construct

Using the “parallel sections” combined construct

#pragma omp parallel sections [clause[[,] clause]...]

{structured-blocks: sections}

void main (void)

{

 #pragma omp parallel sections

 {

 synthetic_phase1();

 #pragma omp section

 synthetic_phase2();

 #pragma omp section

 synthetic_phase3();

 }

}

 synthetic_phase2();

 synthetic_phase3();

 synthetic_phase1();

Parallel programming: OpenMP

Privatizing variables inside the construct (lastprivate)

The variable inside the construct is a new variable

– the new variables have the same type than original variable

– in any worksharing construct it means all threads have a different variable

– they can be accessed without any kind of synchronization

Already discussed privatization clauses

– private variables have undefined value when starting the block

– firstprivate variables are initialized to the value of the original one

The lastprivate clause

– lastprivate variables (by default) have undefined value when starting the block

– the value of the variable in the lexically last section of the set of sections is

copied back to the original variable

– a variable can be both firstprivate and lastprivate

#pragma omp sections lastprivate(list)

{structured-blocks: sections}

Parallel programming: OpenMP

A lastprivate example (with sections construct)

Recovering the sequential consistency with the lastprivate clause

 #include <stdio.h>

void main (void) {

 int v = 0;

 #pragma omp parallel sections lastprivate(v)

 {

 #pragma omp section

 {

 v = 1;

 synthetic_phase(v);

 }

 #pragma omp section

 {

 v = 2;

 synthetic_phase(v);

 }

 #pragma omp section

 {

 v = 3;

 synthetic_phase(v);

 }

 }

 printf("v = %d\n", v);

}

 synthetic_phase(2);

 synthetic_phase(3);

 synthetic_phase(1);

#include "synthetic.h"

void synthetic_phase(int s) {

 switch case(s)

 {

 case 1:

 matrix_multiply();

 break;

 . . .

 default:

 exit(NOT_IMPLEMENTED);

 }

}

The lexically last

section determines the

value of the original

variable

Parallel programming: OpenMP

Some performance results (synthetic)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 3 4 5 6 7 8

S
p

e
e

d
-u

p

Threads

Synthetic (sections)

Threads Total Time Speed-up

1 4,454202 1,00

2 2,562986 1,74

3 1,940174 2,30

4 1,927576 2,31

5 1,934126 2,30

6 1,929955 2,31

7 1,927792 2,31

8 1,941034 2,29

S 4,452954 1,00

Computing speed-up for the synthetic benchmark (using sections)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑞

𝑇𝑝

Time Results

Parallel programming: OpenMP

The optimal amount of parallelism

Parallel decomposition (choosing the entity’s granularity)

– Where entity may be a (section) structured block, or a (loop) chunk, or a task

– Parallelization may occur at different application levels

• Higher levels  coarse grain granularity

– Small synchronization overhead

– Load imbalance (including lack of parallelism)

• Deeper levels  fine grain granularity

– Greater potential for parallelism (and hence speed-up)

– More synchronization overhead

– The optimal decission is a trade off (but sometimes is difficult to find)

Parallel programming: OpenMP

The loop construct

Distributing a loop among threads

– always attached to a for loop (do in Fortran)

Where clause:

– private(list)  already explained in previous constructs

– firstprivate(list)  already explained in previous constructs

– lastprivate(list)  already explained, but…

– reduction(operator: list)  already explained, but…

– schedule(schedule-kind)

– nowait  already explained in previous constructs

– collapse(n)

– ordered

#pragma omp for [clause[[,] clause]...]

{structured-block: loop}

Parallel programming: OpenMP

The loop construct: description (1)

The iterations of the loop(s) associated to the construct are divided among

the threads of the team

Parallel loop requierements

– loop iterations must be independent (user’s responsibility)

– loops must follow a form that allows to compute the number of iterations

– valid data types for induction variables are: integer types, pointers and random

access iterators (in C++)

#pragma omp for [clause[[,] clause]...]

for (init_expr; test_expr; inc_expr)

Parallel programming: OpenMP

The loop construct: description (2)

It can be combined with the parallel construct

Matrix initialization (using the loop construct)

void foo (int *m, int N, int M)

{

 int i, j ;

#pragma omp parallel for private(j)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

}

New created threads

cooperate to execute

all the iterations of the loop

The i variable is

automatically privatized

The j variable must be

manually privatized

thread-0

thread-1

thread-2

thread-3

N

M

#pragma omp parallel for [clause[[,] clause]...]

{structured-block: loop}

… but other distributions

are also possible

Parallel programming: OpenMP

Loop construct and the lastprivate clause

A lastprivate example

 void main(void)

{

 int i;

 #pragma omp parallel

 {

 #pragma omp for lastprivate(i)

 for (i = 0; i < n-1; i++)

 {

 a[i] = b[i] + b[i+1];

 }

 }

 a[i] = b[i]; /* i == n-1 here */

}

The logical last iteration

determines the value of

the original variable

The lastprivate clause

– lastprivate variables (by default)

have undefined value when

starting the block

– the value of the variable in the last

logical iteration of the loop is

copied back to the original variable

– a variable can be both firstprivate

and lastprivate

#pragma omp for lastprivate(list)

{structured-block: loop}

Parallel programming: OpenMP

Loop construct and the reduction clause

All threads accumulate some values into a single variable

Reduction clause example (loop construct)

Using critical is not good enough (besides being error prone)

#pragma omp for reduction(operator:list)

{structured-block}

– the compiler creates a private copy

that is properly initialized (identity)

– the compiler ensures that the shared

variable is properly (and safely)

updated with all partial results

– valid operators are: +, -, *, |,

||, &, &&, ^, min, max

– but we can also specify user-defined

reductions

int vector_sum (int n , int v [n])

{

 int i , sum = 0;

#pragma omp parallel for reduction (+ : sum)

 {

 for (i = 0; i < n ; i ++)

 sum += v [i] ;

 }

 return sum;

}

Private copies initialized

to the identity

Shared variable updated

with all the partial results

Parallel programming: OpenMP

Loop data environment: what is the default?

Pre-determined data-sharing attributes

– threadprivate variables are threadprivate

– dynamic storage duration objects are shared (malloc, new,…)

– static data members are shared

– variables declared inside the construct (static  shared / automatic  private)

– the loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,

distribute or taskloop constructs is (are) private

– the loop iteration variable in the associated (and unique) for-loop of a simd

construct is linear

– the loop iteration variables in the associated (multiple) for-loops of a simd

construct are lastprivate

Explicit data-sharing clauses (shared, private, firstprivate,…)

– If default clause present, what the clause says (none is very usefull!!!)

Implicit data-sharing rules, depends on the construct

– For the loop region the default data sharing attribute is shared

Parallel programming: OpenMP

The schedule clause

The schedule clause determines which iterations are executed by each of

the threads in the team

– If no schedule clause is present then is implementation defined

There are several possible options as schedule kind

– static[,chunk-size]

– dynamic[,chunk-size]

– guided[,chunk-size]

– auto

– runtime

#pragma omp for schedule(kind[,chunk-size])

{structured-block: loop}

Parallel programming: OpenMP

The loop’s schedule clause: static

The static schedule (with no chunk-size parameter)

– the iteration space is broken in chunks of approximately the same size

– then these chunks are assigned to the threads in a Round-Robin fashion

The static schedule (with chunk-size parameter)  interleaved

– the iteration space is broken in chunks of size N

– these chunks are assigned to the threads in a Round-Robin fashion

. . .

#pragma omp parallel for private(j) schedule(static)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

thread-0

thread-1

thread-2

thread-3

N

. . .

#pragma omp parallel for private(j) schedule(static,10)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

thread-0
thread-1
thread-2
thread-3

N thread-0
thread-1

thread-x+1
thread-x

10 iters
10 iters

10 iters

.

.

.

Parallel programming: OpenMP

The loop’s schedule clause: dynamic & guided

The dynamic schedule

– if no chunk-size is specified, default is 1.

– threads dynamically grab iterations until all iterations have been executed

The guided schedule (variant of dynamic)

– if no chunk-size is specified, default is 1

– chunks decreases in size as threads grab iterations (at least chunk-size)

. . .

#pragma omp parallel for private(j) schedule(dynamic, 10)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

N

10 iters
10 iters

10 iters

.

.

.

N%10

. . .

#pragma omp parallel for private(j) schedule(guided, 10)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

N

xx iters

yy iters

10 iters

.

.

N%10

thread-0

thread-1

thread-3

thread-2

thread-0

thread-1

thread-3

thread-2

Parallel programming: OpenMP

Loop’s schedulers: static vs dynamic (and guided)

Dynamic (and guided) schedulers

– higher overhead

– not very good locality (usually)

– can solve imbalance problems

Characteristics of static schedules

– low overhead

– good locality (usually)

– can have load imbalance problems

Which scheduler should work better with a specific loop

– if all threads reach the loop region at the same time

– if all the iterations have the same weight (work)

– if consequtive loops using the same data (e.g. matrix)

– if threads may reach the loop at different times

– if not all the iterations have the same weight (work)

static

dynamic (guided)

Parallel programming: OpenMP

The schedule clause: auto & runtime

The auto schedule (if you want to experiment)

– in this case, the implementation is allowed to do whatever it wishes

– do not expect much of it as of now

The runtime schedule (delayed until run-time)

– using the OMP_SCHEDULE environment variable

– using the omp_set_schedule() API service call

. . .

#pragma omp parallel for private(j) schedule(auto)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

. . .

#pragma omp parallel for private(j) schedule(runtime)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 m[i * N + j] = 0;

. . .

thread-0

thread-1

thread-3

thread-2

N

$ export OMP_SCHEDULE=static,1024

$./myMatrixMultiply

Computing matrix multiplication…

Parallel programming: OpenMP

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

This allows to overlap the execution of non-dependent loops

#define N 1000

void main (void) {

 int i, a[N], b[N];

 #pragma omp parallel

 {

 #pragma omp for nowait

 for (i = 0; i < N ; i ++)

 a [i] = 0;

 #pragma omp for

 for (i = 0; i < N ; i ++)

 b [i] = 0;

 }

}

– independant iterations (in between

loops)  we can overlap them

– if same iteration space  a better

solution would be to (manually) fuse

the loops

#pragma omp for nowait

{structured-block}

 parallel for

parallel for

Parallel programming: OpenMP

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

But also overlap the execution of “some” dependant loops

#define N 1000

void main (void) {

 int i, a[N], b[N];

 #pragma omp parallel

 {

 #pragma omp for schedule(static) nowait

 for (i = 0; i < N ; i ++)

 a [i] = 0;

 #pragma omp schedule(static) for

 for (i = 0; i < N ; i ++)

 a [i] = a [i] + foo (i);

 }

}

– static scheduler, same iteration

space, and dependant (on index)

iterations (in between loops)  we

can overlap them

– a better solution would be to

(manually) fuse the loops

#pragma omp single nowait

{structured-block}

 parallel for

parallel for

Parallel programming: OpenMP

Avoiding the implicit barrier (loop)

The nowait clause: eliminates the barrier at the end of the loop

But also overlap the execution of “some” dependant loops

#define N 1000

void main (void) {

 int i, a[N], b[N];

 #pragma omp parallel

 {

 #pragma omp for schedule(dynamic) nowait

 for (i = 0; i < N ; i ++)

 a [i] = 0;

 #pragma omp for

 for (i = 0; i < N ; i ++)

 a [i] = a [i] + foo (i);;

 }

}

– no static scheduler: same iteration

space, and dependant (on index)

iterations (in between loops)  NO

• a better solution would be to

(manually) fuse the loops

– not the same iteration space: static

scheduler and dependant (on index)

iterations (in between loops)  NO

– dependence (arbitrary in any index):

same iteration space and static

scheduler  NO

#pragma omp single nowait

{structured-block}

Parallel programming: OpenMP

The collapse clause

Allows to distribute work from a set of n-nested loops

– loops must be perfectly nested (no instruction in between)

– the nest must traverse a rectangular iteration space

– combines both iteration spaces to create a single one

Using the collapse clause over two loops

#define N 1000

#define M 4000

void main (void) {

 int i, j;

 #pragma omp parallel

 {

 #pragma omp for collapse(2)

 for (i = 0; i < N; i ++)

 for (j = 0; j < M; j ++)

 foo (i , j) ;

 }

}

 #pragma omp for

 for (idx = 0; idx < (N * M); idx ++)

 {

 foo (fi(idx) , fj(idx)) ;

 }

– useful when first loop (or both) have

only a few iterations (e.g. N = 64)

– increase the amount of created

parallelim

Parallel programming: OpenMP

Synchronizing the execution

Threads need to impose some ordering in the sequence of their actions

– execute in a logical order certain regions

– mutual exclusion in the execution of a given region

– wait in a location until all other threads have reach the same location

– wait until a given condition is acomplished

OpenMP provides different synchronization mechanisms

– master construct already explained in previous sessions

– critical construct  already explained in previous sessions

– barrier directive

– atomic construct

– taskwait directive  will be explained in following sessions (tasking)

– taskgroup construct  will be explained in folowing session (tasking)

– depend clause  will be explained in following sessions (tasking)

Parallel programming: OpenMP

The barrier directive

Threads cannot proceed past a barrier point until all threads reach the

barrier and all previously generated work is completed

– Some constructs have an implicit barrier at the end (e.g. the parallel construct)

Synchronizing threads between two phases in a parallel region

#pragma omp barrier

#pragma omp parallel

{

 foo ();

 #pragma omp barrier

 bar ();

}

Forces all foo()’s too

happen before all bar()’s

Implicit barrier

foo()

bar()

Parallel programming: OpenMP

Mutual exclusion for simple read & update operations

The atomic construct

– special mechanism of mutual exclusion to “read & update” operations

– only supports simple read & update expressions

• e.g., x += 1  whole expression is protected

• x = x - foo()  only protects the read & update part, foo() is not protected

Usually much more efficient than a critical construct…

… but it is not compatible with it 

An additional mechanism to fix data races

int x =1;

#pragma omp parallel num_threads(2)

{

 #pragma omp atomic

 x++;

}

printf("%d\n", x);

Only one thread at a

time updates x here

Prints “3”

int x =1;

#pragma omp parallel num_threads(2)

{

 #pragma omp atomic

 x++;

 . . .

 #pragma omp critical

 x++;

}

printf("%d\n", x);

May execute an atomic

and a critical block at

the same time

Prints “?”

Parallel programming: OpenMP

Summary: OpenMP worksharings

OpenMP worksharings: single, section, loop and workshare

– distribute work among threads withoud using thread-id (neither num-threads)

– parallel decomposition trade off: coarse and fine granularity

– control how the work is distribute (loop) using the schedule clause

– new ways to control the data environment in these news constructs

Additional synchronization constructs

– the barrier directive synchronize threads

– the atomic directive  other mechanism to fix data races

Parallel programming: OpenMP

THANKS
Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial

and research purposes. The User may not commercially use the material, unless has been granted prior

written consent by the Licensor to do so; and cannot remove, obscure or modify copyright notices, text

acknowledging or other means of identification or disclaimers as they appear. For further details, please

contact BSC-CNS.

For further information please visit/contact:

http://www.linkedin.com/in/xteruel

xavier.teruel@bsc.es

