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Expected workshop learning outcomes

● Learn how to decompose real codes into parallel patterns

○ Have experience decomposing the hydrodynamics code LULESH (from the CORAL benchmark suite) 

into parallel patterns

● Learn how to parallelize real codes using OpenACC

○ Have experience parallelizing the hydrodynamics code LULESH 

○ Have a practical step-by-step approach based on patterns for parallelizing any code

● Learn best practices for parallel programming using OpenACC



Why use patterns to parallelize code?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018)
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of 

code to an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a 

value to the same location, the hardware may not guarantee the same result for each execution.”

○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”

○ “Programmers need to be very careful that the program uses appropriate synchronization to 

ensure that an assignment or modification by a thread on any device to data in shared memory is 

complete and available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of OpenACC
● Decomposition of codes into patterns

○ Helps to make good use of OpenACC and OpenMP

○ Speeds up the parallelization process

○ Is more likely to result in good performance



Decomposing your code into components

Real codes are large and complex:  identifying 
smaller sections that can be parallelized makes the 
parallelization task simpler

Types of components:

- Scientific components 

(e.g. MATMUL, FFT)

- Code components or patterns 

(e.g. REDUCTION)

Parallel pattern

Parallel Code 

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code



Decomposing your code into components

How does it fit into 
the classical 
parallelization 
workflow?

High-productivity 
approach 
independent of 
OpenMP, OpenACC, 
OmpSs,...

Parallel pattern

Parallel Code 

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code

Compare serial and 
parallel performance

Optimize parallel 
code

Add directives

Analyze for 
parallelism

Profile & identify 
hotspots

Analyze for 
parallelism

Add directives

Compare serial and 
parallel performance

Optimize parallel 
code

Profile & identify 
hotspots



Decomposing your code into components

Step 1: Use your profiling to
○ Identify calls, routines, functions or loops that consume most of the runtime

Step 2: For each routine contained in an external library
○ Scientific components: kernels available as external libraries, including but not limited to 

dense/sparse linear algebra and spectral methods.

○ Consider using a highly optimized version of the routine available in the target platform

Step 3: For each routine coded by the programmer that matches a routine 

contained in external library
○ Consider replacing the corresponding routines with highly-optimized version in your platform

Step 4: For the remaining user-defined routines
○ Understand the compute patterns and flow patterns you have in your code



Parallelizing 
by pattern Parallel pattern

Parallel 
implementation

Pattern
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Identification of parallel patterns

Parallel
Patterns

parallel forall

parallel sparse 
reduction

for (j=0; j<n; j++ ) {
   A[j] = B[j];
}

for (j=0; j<n; j++ ) {
   A[C[j]] += B[j];
}

parallel scalar 
reduction

for (j=0; j<n; j++ ) {
   A += B[j];
}

parallel sparse 
forall

for (j=0; j<n; j++ ) {
   A[C[j]] = B[j];
}



Forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall
for (j=0; j<n; j++ ) {
   A[j] = B[j];
}

● A loop that updates the elements of an 
array. 

● Each iteration updates a different 
element of the array.

● The result of computing this pattern is 
an array that is the “output variable”.

Parallel Loop Forall



Scalar reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

for (j=0; j<n; j++ ) {
   T = 0;
   y[j] = T;
}

● Combine multiple values into one single 
element (the scalar reduction variable) 
by applying an associative, commutative 
operator. 

● Most frequently in a loop
● The result of computing this pattern is a 

scalar that is the “reduction variable”.

parallel scalar 
reduction

for (j=0; j<n; j++ ) {
   A += B[j];
}

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Scalar 
reduction



Sparse reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

for (j=0; j<n; j++ ) {
   T = 0;
   y[j] = T;
}

● A sparse or irregular reduction combines a set of 
values from a subset of the elements of a vector 
or array with an associative, commutative 
operator. 

● The set of array elements used cannot be 
determined until runtime due to the use of 
subscript array to provide these values. 

● The result of computing this pattern is an array 
that is the “reduction variable”.

parallel sparse 
reduction

for (j=0; j<n; j++ ) {
   A[C[j]] += B[j];
}

Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

Sparse 
reduction



Sparse forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

for (j=0; j<n; j++ ) {
   T = 0;
   y[j] = T;
}

parallel sparse 
forall

for (j=0; j<n; j++ ) {
   A[C[j]] = B[j];
}

Parallel Loop w/ Explicit PrivatizationSparse 
forall

● A loop that updates the elements of an 
array. 

● The set of array elements used cannot 
be determined until runtime due to the 
use of subscript array to provide these 
values. 

● The result of computing this pattern is 
an array that is the “output variable”.



Why use patterns to parallelize code?

1: Patterns enable to ensure correct variable management in the parallel code
○ Each pattern has one output variable that is computed in the code.

○ The pattern dictates the correct data scoping of the output variable (e.g. shared in forall, reduction in 

scalar reduction).

2: Patterns provide algorithmic rules to re-code sequential code into a 

parallel-equivalent code
○ Patterns provide information about the type of computations that are associated with a variable of 

the code. And this type of computations dictates what codes can be parallelized.

○ Examples: pattern scalar reduction can be parallelized, and convergence loop cannot be parallelized

3: Patterns enable to code parallel versions for several standards and platforms
○ Each pattern provides code rewriting rules for OpenMP/OpenACC and CPU/GPU.



Parallelization strategies



Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Patterns and parallelization strategies

Parallelization
Strategies Sparse 

reduction

Parallel Loop 

Scalar 
reduction

Forall

                Parallel Loop w/ Explicit PrivatizationSparse 
forall



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Implementation of Parallel Loop

#pragma omp parallel default(none) shared(D, X, Y, a, n)
{
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
    D[i] = a * X[i] + Y[i];
}
} // end parallel
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#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < n; i++) {
    D[i] = a * X[i] + Y[i];
}
} // end parallel

Definition of the parallel 
region
Identifies the code section that 
can be executed concurrently.

Shared variables
Read-only variables that can be 
accessed by all threads.

Work sharing
The loop directive allows the 
compiler to map the 
computational workload to 
threads.



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Implementation of Parallel Loop w/ Built-in Reduction
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double sum = 0.0;

#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for reduction(+: sum) schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop reduction(+: sum)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum += sqrt(1 - x * x);
}
} // end parallel

Definition of the parallel region
Identifies the code section that can be 
executed concurrently.

Shared variables
Read-only variables that can be accessed 
by all threads.

Work sharing
The loop/for directive allows the 
compiler to map the computational 
workload to threads.

Reduction
Identifies the loop as a reduction, and 
identifies the subject of the reduction (i.e. 
sum) and the reduction operator (i.e. ‘+’)



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Implementation of Parallel Loop w/ Atomic

Shared variable, S, is the ‘reduction’ variable. No private 
data.

Access to the variable S, is controlled by the ‘atomic’ 
directive: i.e. only one thread can read/write the variable 
at any one time. 

In each atomic access of S, the thread adds part of the 
contribution to the total reduction value. In this instance, 
the reduction operation is an addition.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

0 S

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …

SHARED MEMORY

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …



Implementation of Parallel Loop w/ Atomic
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Definition of the parallel 
region 
Identifies the code section 
that can be executed 
concurrently.

Shared variables
Read-only variables that can be 
accessed by all threads.

Work sharing
The loop directive allows the 
compiler to map the 
computational workload to 
threads.

Atomic update
Only one thread can read/write 
the variable at any one time. 

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    #pragma acc atomic update
    sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    #pragma omp atomic update
    sum += sqrt(1 - x * x);
}
} // end parallel



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Implementation of Parallel Loop w/ Explicit Privatization

Create private copies S0…Sp-1 of the shared variable S. 
Initialize the private variables to 0.

Each thread computes a partial sum using its private copy 
only. No synchronization with other threads.

Each thread adds its partial sum to the global sum. Using 
atomic guarantees exclusive access to the reduction 
variable.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

SHARED MEMORY

0

S00

S

S10 S20

S0+= … S1+= … S2+= …

#atomic
S += S0

#atomic
S += S1

#atomic
S += S2

S1+= …S0+= … S2+= …

S0+= …
...

S1+= …
...

S2+= …
...



Implementation of Parallel Loop w/ Explicit Privatization

Use atomic to contribute to global value
To complete the calculation each thread adds its 
contribution to the global shared using atomic.
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Create private, local copies
Create thread-local copies of the reduction variable 
and initialize the local copies  to 0.

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
// preamble
double sum_private = 0;
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum_private += sqrt(1 - x * x);
}
// postamble
#pragma omp atomic update
sum += sum_private;
// end postamble
} // end parallel

#pragma omp parallel default(none) shared(col_ind, n, row_ptr, val, x, y)
{
// preamble
unsigned int y_length = 0 + n;
double *y_private = (double *) malloc(sizeof(double) * y_length);
for (int i = 0; i < y_length; ++i) {
  y_private[i] = 0;
}
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
    for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
        y_private[col_ind[k]] = y_private[col_ind[k]] + x[i] * val[k];
    }
}
// postamble
#pragma omp critical
for(int i = 0; i < y_length; ++i) {
  y[i] += y_private[i];
}
free(y_private);
// end postamble
} // end parallelExplicit privatization

Each thread performs a thread-local 
computation on the private copy.



Parallelization strategies
Pros & Cons



Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall



Pros Cons

Parallel Loop - Easy to implement
- No synchronization overhead within the loop

- Limited applicability: only works when 
each loop iteration is entirely 
independent

Parallel Loop 
w/ Built-in 
reduction

- Scales with threads/core counts, not the problem size
- Offers speedup even for codes with low arithmetic intensity
- Complexity handled by the compiler
- Potential for highly optimized implementation 
(compiler/platform dependent)

- Can only be used for supported 
reduction operators 

Parallel Loop 
w/ atomic 
protection

- Easy to understand
- Provides speedup for codes with high arithmetic intensity
- Solution for reduction patterns where operator is not 
supported by build-in reduction clause

- Synchronization overhead scales with 
the number of threads
- Poor performance for codes with low 
arithmetic intensity

Parallel Loop 
w/ explicit 
privatization

- Possible to achieve speedup similar to Built-in Reductions
- Programmer has full control of the parallel implementation

- Significant programmer effort
- Not suitable for GPUs due to memory 
requirements



Tasking 
(New in Parallelware Trainer)



Mapping strategies to patterns for Tasking
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Fine-grain tasking on CPU (OpenMP 3.5 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Parallel 
Pattern

Forall ✓

Scalar Reduction upcoming ✓ upcoming

Sparse Reduction ✓ upcoming

Sparse forall upcoming

Coarse-grain tasking on CPU (OpenMP 3.5: task/taskwait + loop stripmining; OpenMP 4.5 taskloop grainsize/numtasks)

Parallel 
Pattern

Forall upcoming

Scalar Reduction upcoming upcoming upcoming

Sparse Reduction upcoming upcoming

Sparse forall



OpenMP 3.5: task/taskwait

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int i = 0; i < N; i++) {
#pragma omp task shared(sum)
   {
    double x = (i + 0.5) / N;
    #pragma omp atomic update
    sum += sqrt(1 - x * x);
   }
}
#pragma omp taskwait
} // end parallel master

Implementation of Parallel Loop w/ Atomic

OpenMP 4.5: taskloop

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp single
{
    #pragma omp taskloop
    for (int i = 0; i < N; i++) {
        double x = (i + 0.5) / N;
        #pragma omp atomic update
        sum += sqrt(1 - x * x);
    }
} // end parallel



With private reduction (OpenMP 5.0)

double sum = 0.0;
#pragma omp parallel default(none) shared(N) reduction(+:sum)
#pragma omp master
{
#pragma omp taskloop grainsize(BS) in_reduction(sum)

for (int i = 0 ; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);

}
} // end parallel

Implementation of Parallel Loop w/ Built-in Reduction
(upcoming -not available yet-)



Implementation of Coarse-Grain Tasking
(upcoming -not available yet-)

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int I = 0; I < N; I+=BS) {
#pragma omp task shared(sum)
   for (int i = I ; i < I+BS && i < N; i++) {
    double x = (i + 0.5) / N;
    #pragma omp atomic update
    sum += sqrt(1 - x * x);
   }
}
#pragma omp taskwait
} // end parallel master

OpenMP 3.0: task/taskwait + loop stripmining



double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int I = 0; I < N; I+=BS) {
#pragma omp task shared(sum)
   {
    double psum = 0.0;
    for (int i = I ; i < I+BS && i < N; i++) {
     double x = (i + 0.5) / N;
     psum += sqrt(1 - x * x);
    }
    #pragma omp atomic update
    sum += psum;
   }
}
#pragma omp taskwait
} // end parallel

Implementation of Coarse-Grain Tasking
Parallel Loop w/ Explicit Privatization
(upcoming -not available yet-)



Use cases



Case studies: decomposing PI 
and  LULESH microkernel
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GOALS:
● Understand how to split PI up into components
● Understand how to split LULESH into components



HANDS-ON LAB 

● Install and launch Parallelware 
Trainer:

https://www.appentra.com/ 

● Two exercises:
○ Simple walkthrough: parallelizing the 

calculation of ℼ

○ Parallelizing a micro-kernel of the 

CORAL-lulesh benchmark

➢ Follow the instructions on the 
worksheet

https://www.appentra.com/


An interactive 
tool that acts as 

your mentor

“ Tell me, I will forget,
Show me, I may remember,
Involve me, I will understand.” 



Parallelware Trainer
Project Explorer Code Editor Version Manager

Output Consoles



Parallelware Trainer



Stay in touch

Sign up for our newsletter: 
www.appentra.com/blog/newsletter/ 

Email us at: info@appentra.com 

Download/Purchase Parallelware Trainer:
www.appentra.com/products/parallelware-trainer/

Learn more

Appentra                        appentra                  company/appentra/

www.appentra.com

https://www.appentra.com/blog/newsletter/
mailto:info@appentra.com
https://www.appentra.com/products/parallware-trainer/
https://www.appentra.com/blog/newsletter/


Material for Trainers

- Decomposition of use cases into patterns
- Discussion of the training outcomes

43



Decomposition of PI into Patterns
 Code file “pi.c”  Pattern

 Function Line  Forall  Scalar reduction  Sparse reduction Convergence loop

main() 29 sum



Decomposition of LULESH into Patterns
 Code file “luleshmk.c”  Pattern

 Function Line  Forall  Scalar reduction  Sparse reduction Convergence loop

CalcElemFBHourglassForce_workload() 60 sum

CalcElemFBHourglassForce() 73
hgfx
hgfy
hgfz

CalcFBHourglassForceForElems() 131
 domain_m_fx
 domain_m_fy
 domain_m_fz

ApplyMaterialPropertiesForElems_workload() 187 sum

ApplyMaterialPropertiesForElems()
210  vnew
217  vnew

CalcElemVelocityGradient_workload() 231 sum

CalcKinematicsForElems() 258
 domain_m_dxx
 domain_m_dzz

 domain_m_dyy

 luleshmk() 292  iter (loop index)

 main()

349
 locDom_e
 locDom_m_dxx
 locDom_m_dyy

 locDom_m_dzz
 vnew

358  locDom_m_nodelist

365
 locDom_fx
 locDom_fy
 locDom_fz

 VerifyAndWriteFinalOutput() 85
MaxAbsDiff
TotalAbsDiff
MaxRelDiff



HANDS-ON LAB: a walkthrough

● Launch Parallelware Trainer:
○ Login to the remote machine: boada.ac.upc.edu

Connect using your account “nct010XX” (e.g. nct01026 - nct01055):
$ ssh -YX <username>@boada.ac.upc.edu   

○ Launch Trainer:
$ /scratch/nas/1/marenaz/pwtrainer-0.5.3-x86_64-linux-ubuntu-14.04/pwtrainer &

● Run the Pi calculation example:
○ Copy the sample codes to your $HOME directory in boada:

$ cp /scratch/nas/1/marenaz/samples.tgz $HOME  
○ Open the PI project following instructions in the worksheet.

mailto:patcXX@boada.ac.upc.edu


HANDS-ON LAB

Remote execution on “mt1.bsc.es” @BSC using SLURM
Add ssh key to avoid asking for password

■ boada$ ssh-keygen// Generates new SSH key (press ENTER three times)

■ boada$ ssh-copy-id <username>@mt1.bsc.es  // Transfer new SSH key to mt1.bsc.es

Edit script “./samples/remote_on_mt1.config”
■ Set “REMOTE_USER=<USERNAME>”  // Your account “NCT010xx” at PATC

■ Make sure variable “REMOTE_HOST=mt1.bsc.es”

Profile setup:Open the setup of the “Parallel” execution console
■ Select “remote_run_on_mt1.sh” in “Custom execution script”

■ Run the project (press F6 or click “Play” button)

 DEMO with REMOTE 
execution!!


