Make Code Parallel

guided by Patterns

Using Parallelware Trainer

Manuel Arenaz
manuel.arenaz@appentra.com

AAAAAAAAAAAA

1[TRATNER (g sppent:



s e AR
Expected workshop learning outcomes

e Learn how todecompose real codes into parallel patterns

o Have experience decomposing the hydrodynamics code LULESH (from the CORAL benchmark suite)

into parallel patterns

e Learn how to parallelize real codes using OpenACC

o Have experience parallelizing the hydrodynamics code LULESH

o Have a practical step-by-step approach based on patterns for parallelizing any code

e Learn best practices for parallel programming using OpenACC

(@ 3ppentra



s e AR
Why use patterns to parallelize code?

e The OpenACC Application Programming Interface. Version 2.7 (November 2018)

o ‘“does not describe automatic detection of parallel regions or automatic offloading of regions of
code to an accelerator by a compiler or other tool’

o ‘“ifonethread updates a memory location and another reads the same location, or two threads store a
value to the same location, the hardware may not guarantee the same result for each execution”

o ‘“itis(..) possible to write a compute region that produces inconsistent numerical results’

o “Programmers need to be very careful that the program uses appropriate synchronization to
ensure that an assignment or modification by a thread on any device to data in shared memory is
complete and available before that data is used by another thread on the same or another device”

e Programmers are responsible for making good use of OpenACC

e Decomposition of codes into patterns

o Helpsto make good use of OpenACC and OpenMP
o Speedsup the parallelization process
o Ismore likely to result in good performance

(@ 3ppentra



Decomposing your code into components

Serial Code

Real codes are large and complex: identifying
smaller sections that can be parallelized makes the

parallelization task simpler Components
Types of components:

- Scientific components
(e.g. MATMUL, FFT) Parallel patterns

- Code components or patterns
(e.e. REDUCTION) Parallel Code

g.»,appentra



Decomposing your code into components

Serial Code

How does it fit into Profile & identify
the classical hotspots
parallelization Components
Analyze for
?
workflow: parallelism

High-productivity
Add directives

approach
independent of Parallel patterns
OpenMP, OpenACC, Compare serial and
parallel performance
OmpSs,... Parallel Code

Optimize parallel
code

\.,appentra



N s Lt N~
Decomposing your code into components

Syl HUse your profiling to

o lIdentify calls, routines, functions or loops that consume most of the runtime

S o WHFor each routine contained in an external library
o Scientific components: kernels available as external libraries, including but not limited to

dense/sparse linear algebra and spectral methods.
o Consider using a highly optimized version of the routine available in the target platform

Yl R For each routine coded by the programmer that matches a routine
contained in external library

o Consider replacing the corresponding routines with highly-optimized version in your platform

o K:X For the remaining user-defined routines

o Understand the compute patterns and flow patterns you have in your code

(@ 3ppentra



Serial Code

Components

Parallelizing
by pa tte r n Parallel pattern

Parallel Code

\’appentra



Identification of parallel patterns

Parallel
Patterns

parallel forall

parallel scalar
reduction

parallel sparse
reduction

parallel sparse
forall

h. 4 4 4 4

for (3=0; j<nj; j++ )

}

for (3=0; j<nj j++ )

}

for (3j=0; j<nj j++ )

}

for (3j=0; j<nj; j++ )

}

A[31 = B[jI;

A += B[jl;

A[C[31] += B[jI;

A[C[31T1 = B[jl;

\.,appentra



Forall

mR, Understanding the sequential code

e Aloopthat updates the elements of an
array. . . for (j=0; j<n; j++ ) {

e Eachiteration updates a different parallel forall A[i1 = B[j1;
element of the array. }

e Theresult of computing this patternis
an array that is the “output variable”.

- Identifying opportunities for parallelization

Forall Parallel Loop

\.appentra



Scalar reduction

mR, Understanding the sequential code

e Combine multiple values into one single
element (the scalar reduction variable)
by applying an associative, commutative
operator.

e Most frequently in aloop

e Theresult of computing this patternis a
scalar that is the “reduction variable”.

Q Identifying opportunities for parallelization

Scalar
reduction

parallel scalar
reduction

Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

for (j=0; j<n; j++ ) {

A += B[j];
3

\.appentra



Sparse reduction

mR, Understanding the sequential code

e Asparseorirregular reduction combines a set of
values from a subset of the elements of a vector
or array with an associative, commutative for (icos Gems des
operator. parallel sparse e sty
e Theset of array elements used cannot be reduction ¥
determined until runtime due to the use of
subscript array to provide these values.
e Theresult of computing this patternis an array
that is the “reduction variable”.

Q Identifying opportunities for parallelization

Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

Sparse
reduction

(@ appentra



Sparse forall

mR, Understanding the sequential code

e Aloop that updates the elements of an
array.

e Theset of array elements used cannot
be determined until runtime due to the
use of subscript array to provide these
values.

e Theresult of computing this patternis
an array that is the “output variable”.

Q Identifying opportunities for parallelization

forall

parallel sparse
forall

Sparse Parallel Loop w/ Explicit Privatization

for (j=0; j<n; j++ ) {
A[C[j1]1 = BI[j1;
}

\.appentra



s e AR
Why use patterns to parallelize code?

El: Patterns enable to ensure correct variable management in the parallel code

o Each pattern has one output variable that is computed in the code.
o The patterndictates the correct data scoping of the output variable (e.g. shared in forall, reduction in
scalar reduction).

: Patterns provide algorithmic rules to re-code sequential code into a
parallel-equivalent code

o Patterns provide information about the type of computations that are associated with a variable of
the code. And this type of computations dictates what codes can be parallelized.
o Examples: pattern scalar reduction can be parallelized, and convergence loop cannot be parallelized

: Patterns enable to code parallel versions for several standards and platforms
o Each pattern provides code rewriting rules for OpenMP/OpenACC and CPU/GPU.

(@ 3ppentra



Parallelization strategies




Patterns and parallelization strategies

Parallelization
Strategies

Forall

Scalar
reduction

Sparse
reduction

Sparse
forall

)
)
)

Parallel Loop

Parallel Loop w/ Built-in reduction

Parallel Loop w/ Explicit Privatization

Parallel Loop w/ Built-in reduction

Parallel Loop w/ Explicit Privatization

Parallel Loop w/ Explicit Privatization




s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy
Parallel Loo Parallel Loop w/ Parallel Loopw/ | Parallel Loop w/ Explicit
P | Built-in reduction Atomic Privatization
Multithreading on CPU
Forall V4
Scalar Reduction
Parallel v v v
Pattern Sparse Reduction / /
Sparse forall upcoming
Offloading to GPU
Forall V4
Scalar Reduction
Parallel v/ v
Pattern Sparse Reduction 4
Sparse forall




s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy

Parallel Loop

Multithreading on CPU

Forall v
Scalar Reduction

Parallel

Pattern Sparse Reduction

Sparse forall

Offloading to GPU

Forall V4
Scalar Reduction

Parallel

Pattern Sparse Reduction

Sparse forall




Implementation of Parallel Loop

#pragma omp parallel default(none) shared(D, X, Y, a, n)

{

#pragma omp for schedule(auto)

for (int i = 0; i < nj; i++) {
D[i] = a % X[i] + Y[i];

\Deﬁnition of the parallel

region
|dentifies the code section that
can be executed concurrently.

}
} // end parallel

Shared variables
Read-only variables that can be

accessed by all threads.
#pragma acc parallel

{

#pragma acc loop - Work sharing

for (int i = 03 i < nj i++) { The loop directive allows the
D[i] = a * X[i] + Y[i]; compiler to map the

} computational workload to

} // end parallel threads.

\.appentra




s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy

Parallel Loop w/
Built-in reduction
Multithreading on CPU
Forall
Scalar Reduction 4
Parallel
Pattern Sparse Reduction
Sparse forall
Offloading to GPU
Forall
Scalar Reduction v
Parallel
Pattern Sparse Reduction
Sparse forall




Implementation of Parallel Loop w/ Built-in Reduction

double sum = 0.0; Definition of the parallel region
|dentifies the code section that can be

executed concurrently.

#pragma omp parallel 'aefault(none) shared (N, sum)

{
#pragma omp for reduction(+: sum) schedule(auto)
for (int i = 0; Ny {
double x = (i + ©. s Shared variables
sum += sqrt(l - x * x); Read-only variables that can be accessed
} by all threads.

} // end parallel

Work sharing

The loop/for directive allows the
compiler to map the computational
workload to threads.

double sum = 0.0;

#pragma acc parallel

{

#pragma acc loop reduction(+: sum) g

for (int i = 0 i < Nj i++) { Reduction
double x = (i + 0.5) / N; Identifies the loop as a reduction, and
sum += sqrt(l - x * x); identifies the subject of the reduction (i.e.
} sum) and the reduction operator (i.e. ‘+’)

} // end parallel
\.appentra



s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy

Multithreading on CPU

Forall

Scalar Reduction
Parallel

Pattern Sparse Reduction

Sparse forall

Offloading to GPU

Forall

Scalar Reduction
Parallel

Pattern Sparse Reduction

Sparse forall




Implementation of Parallel Loop w/ Atomic

SHARED MEMORY
o |

Thread 0

Thread1 Thread 2

Private data Private data Private data

Shared variable, S, is the ‘reduction’ variable. No private
data.

Access to the variable S, is controlled by the ‘atomic’
directive: i.e. only one thread can read/write the variable
at any one time.

In each atomic access of S, the thread adds part of the
contribution to the total reduction value. In this instance,
the reduction operation is an addition.

#atomic
S+=...
#atomic
S+=...

#atomic

#atomic
S+=...
#atomic
S+=...

#atomic

#atomic
S+=...
#atomic
S+=...

#atomic



s e AR
Implementation of Parallel Loop w/ Atomic

double sum = 0.0;

#pragma omp parallel agfault(none) shared (N, sum)

{

#pragma omp for schedule(auto)

for (int i = @3 i < Nj i++) {
double x = (i + 0.5) / N;
#pragma omp atomic update
sum += sqrt(l - x * x);

}

} // end parallel

double sum = 0.0;

#pragma acc parallel

{

#pragma acc loop

for (int i = 0; i < Nj; i++) {
double x = (i + 0.5) / N;
#pragma acc atomic update
sum += sqrt(l - x * x);

}

} // end parallel

Definition of the parallel
region

|dentifies the code section
that can be executed
concurrently.

Shared variables
Read-only variables that can be
accessed by all threads.

Work sharing

The loop directive allows the
compiler to map the
computational workload to
threads.

Atomic update
Only one thread can read/write
the variable at any one time.

\.appentra



s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Forall
Scalar Reduction v
Parallel
Pattern Sparse Reduction /
Sparse forall upcoming

Offloading to GPU

Forall

Scalar Reduction
Parallel

Pattern Sparse Reduction

Sparse forall




Implementation of Parallel Loop w/ Explicit Privatization

SHARED MEMORY

Thread0 Thread1l Thread?2

Create private copiesS,,...S_, of the shared variable S. Private data J Private data
Initialize the private variables to 0.

Each thread computes a partial sum using its private copy
only. No synchronization with other threads.

Each thread adds its partial sum to the global sum. Using

atomic guarantees exclusive access to the reduction AT AT O
variable. S+=5, St=35, 5+=5,




Implementation of Parallel Loop w/ Explicit Privatization

Create private, local copies
Create thread-local copies of the reduction variable
and initialize the local copies to O.

double sum = 0.0;

#pragma omp parallel default(none) shared(N, su

{

// preamble

double sum_private = 0;

// end preamble

#pragma omp for schedule(auto)

for (int i = 0; i < Nj; i++) {
double x = (i + 0.5) / N;
sum_private += sqrt(l - x * Xx)3;

}

// postamble

#pragma omp atomic update

sum += sum_private;

// end postamble

} // end parallel

Explicit privatizatio
Each thread performs a thread-local
computation on the private copy.

Use atomic to contribute to global value
To complete the calculation each thread adds its
contribution to the global shared using atomic.

#ppagma omp pdrallel default(none) shared(col_ind, n, row_ptr, val, x, y)
// preamble
unsigned int y_length = 0 + n;

double *y_priJate = (double x) malloc(sizeof(double) * y_length);
for (int i = @; i < y_length; ++i) {

y_private[i]l = 0;
}
// end preambl
#pragma omp fof schedule(auto)

for (int i = 0f 1 < nj; i++) {
for (int k|= row_ptr[i]; k < row_ptr[i + 1]; k++) {
y_privhate[col_ind[k]] = y_private[col_ind[k]] + x[i] * val[k];

// postamble

#pragma omp critical

for(int i = 0; i < y_length; ++i) {
y[i]l += y_private[i];

}

free(y_private);

// end postamble

} // end parallel

\.appentra



Parallelization strategies

Pros & Cons




s e AR
Mapping parallelization strategies to patterns

Parallelization Strategy
Parallel Loo Parallel Loop w/ Parallel Loopw/ | Parallel Loop w/ Explicit
P | Built-in reduction Atomic Privatization
Multithreading on CPU
Forall V4
Scalar Reduction
Parallel v v v
Pattern Sparse Reduction / /
Sparse forall upcoming
Offloading to GPU
Forall V4
Scalar Reduction
Parallel v/ v
Pattern Sparse Reduction 4
Sparse forall




Pros Cons

- Limited applicability: only works when
each loop iteration is entirely

Parallel Loop - Easy to implement

- No synchronization overhead within the loop

independent
Para".el |:00p - Scales with threads/core counts, not the problem size
w/ Built-in - Offers speedup even for codes with low arithmetic intensity - Can only be used for supported
reduction - Complexity handled by the compiler reduction operators
- Potential for highly optimized implementation
(compiler/platform dependent)
- Easy to understand - Synchronization overhead scales with
- Provides speedup for codes with high arithmetic intensity the number of threads
- Solution for reduction patterns where operator is not - Poor performance for codes with low
supported by build-in reduction clause arithmetic intensity
Parallel Loop - Significant programmer effort
w/ explicit - Possible to achieve speedup similar to Built-in Reductions - Not suitable for GPUs due to memory
- Programmer has full control of the parallel implementation requirements

privatization

(@ appentra



Tasking

(New in Parallelware Trainer)




s e AR
Mapping strategies to patterns for Tasking

Parallelization Strategy

Parallel Loop

Fine-grain tasking on CPU (OpenMP 3.5 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Forall v
Scalar Reduction

Parallel

Pattern Sparse Reduction

Sparse forall




Implementation of Parallel Loop w/ Atomic

OpenMP 3.5: task/taskwait OpenMP 4.5: taskloop

double sum = 0.0; double sum = 0.0;

#pragma omp parallel default(none) shared(N, sum) #pragma omp parallel default(none) shared(N, sum)

#pragma omp master #pragma omp single

{ {

for (int i = 03 i < Nj 1i++) { #pragma omp taskloop

#pragma omp task shared(sum) for (int i = 03 i < Nj 1i++) {
{ double x = (i + 0.5) / N;
double x = (i + 0.5) / N; #pragma omp atomic update
#pragma omp atomic update sum += sqrt(l1 - x * x);
sum += sqrt(l - x * x); }
} } // end parallel

}

#pragma omp taskwait
} // end parallel master

\.appentra



Implementation of Parallel Loop w/ Built-in Reduction
(upcoming -not available yet-)

With private reduction (OpenMP 5.0)

double sum = 0.0;
#pragma omp parallel default(none) shared(N) reduction(+:sum)
#pragma omp master
{
#pragma omp taskloop grainsize(BS) in_reduction(sum)
for (int i = 0 ;3 i < N; i++) {
double x = (i + 0.5) / Nj
sum += sqrt(l - x * x)3
}
} // end parallel

\.,appentra



Implementation of Coarse-Grain Tasking

(upcoming -not available yet-)

OpenMP 3.0: task/taskwait + loop stripmining

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int I = 0; I < N; I+=BS) {
#pragma omp task shared(sum)
for (int i = I ; i < I+BS && i < Nj i++) {
double x = (i + 0.5) / Nj
#pragma omp atomic update
sum += sqrt(l - x * x);
}
}
#pragma omp taskwait
} // end parallel master

\.appentra



Implementation of Coarse-Grain Tasking

Parallel Loop w/ Explicit Privatization
(upcoming -not available yet-)

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int I = 03 I < N; I+=BS) {
#pragma omp task shared(sum)
{
double psum = 0.0;
for (int i = I ; i < I+BS && i < Nj 1i++) {
double x = (i + 0.5) / N;
psum += sqrt(l - x * Xx);
}
#pragma omp atomic update
sum += psum;
}
}
#pragma omp taskwait

} // end parallel \.appentra






Case studies: decomposing Pl
and LULESH microkernel

GOALS:
e Understand how to split Pl up into components
e Understand how to split LULESH into components

(@ 3Ppentrasy



HANDS-ON LAB

e Install and launch Parallelware

Trainer:
https://www.appentra.com/

e Two exercises:
o  Simple walkthrough: parallelizing the
calculation of

o Parallelizing a micro-kernel of the
CORAL-lulesh benchmark

> Follow the instructions on the
worksheet

“HPARALLELWARE
RAINE

") appent ra PRODUCTS TECHNOLOGY TRAINING APPENTRA NEWS FEDER
Parallelware S\
Trainer e

THE HPC LEARNING TOOL TO HELP YOU LEARN ABOUT
HPC AND GET YOUR JOB DONE!

i

(@ 3Ppentra


https://www.appentra.com/

An interactive
tool that acts as
your mentor

Tell me, | will forget,
Show me, | may remember,
Involve me, | will understand.”



Parallelware Trainer

Project Explorer Code Editor Version Manager
File Edit Project Help
ATMUX atmux.c @ M Original1
» o pwt 1 void atmux(double* val, double* x, double*x y, int* col_ind, int* row 1 void atmux(double* val, doublex x, double* y, int* col_ind,
j 2 2
¥ Wisic e 2 30 for(int t = 8; t < n; t++) 3 for(int t = @; t < n; t++)
B accHelper. 4 y[t] = o; 4 ylt] =
B atmux.c 5 5
B atmux_main.c 6 #pragma omp parallel default(none) shared(col_ind, n, row_ptr, vé 6 for(int i = @; i < n; i++) {
B CRSMatrix.c 7 7 for (int k = row_ptr[i]; k < row_ptr[i+1]; k++) {
B CRSMatrix.h 8 #pragma omp for schedule(auto) 8 y[col_ind[k]] = y[col_ind[k]] + x[i] * vall[k];
B Matrix2D.c 9 for(int i = 0 4 <y d4%8) { 9 }
B Matrix2D.h 10 for (int k = row_ptr[i]; k < row_ptr[i+1]; k++) { 18 }
B Vector.c 11 #pragma omp atomic update 11}
B Vectorh 12 ylcol_ind[k]] = y[col_ind[k]] + x[i] * val[k]; 12
B Makefile 1 . }
B READMEmd 15 } end parallel
16}
17

User Action List X
Prerequisites
Line 6: Make sure there is no aliasing among arguments in atmux: val, x, y, col_ind, row_ptr, n
Suggestions
Line 6:Is this array access to 'y’ free of race conditions? If so, you can remove pragma ‘atomic’.

D:/pwtrainer-1.0.0-RC1/docs/samples/ATMUX/src/atmux.
D:/pwtrainer-1.0.0-RC1/docs/samples/ATMUX/src/atmux.
D:/pwtrainer-1.0.0-RC1/docs/samples/ATMUX/src/atmux.

1 #2 Use of explicit privatization

R eI O o me g e
. #1 Use of pragma <atomic> (*) selected

: Parallel sparse reduction on variable 'y

S

D:/pwtrainer-1.0.0-RC1/docs/samples/ATMUX/src/atmux.c:6:2: note: Dependencies due to temporary variables do not prevent parallelization: 'k’

Parallelware: note: Summary of parallelization (Total / Opportunities / Parallelized)
Parallelware: note: Loops: 3/2/1
Parallelware: note: Statements:11/10/7

[09:35:32] Parallelization completed successfully

L 2 -} Build output Execution output Parallelware output

put Consoles

[] PARALLELNARE

TRAINER

(@ 3ppentra



B e gt
Parallelware Trainer

[09:29:21] Analysis completed: 1 opportunity found
[09:29:24] Parallelizing...

/home /User /examples/PI/src/pi.
/home /User/examples/PI/src/pi.
/home /User /examples/PI/src/pi.

note: Analyzed function 'pi’
note: Parallel loop
note: Ranking of available parallelization strategies for variable 'sum’

/home/User/examples/PI/src/pi. note: #1 Use of clause <reduction> (*) selected
/home /User /examples/PI/src/pi. note: #2 Use of pragma <atomic>
/home /User/examples/PI/src/pi. note: #3 Use of explicit privatization

[= 0~ I = = AN« I« ¥V}
NRNNRNNN =

/home /User /examples/PI/src/pi. note: Parallel reduction on variable ‘sum' with associative, commutative operator '+'
/home /User/examples/PI/src/pi.c:6:2: note: Dependencies due to temporary variables do not prevent parallelization: 'x'
Parallelware: note: Summary of parallelization (Total / Opportunities / Parallelized)

Parallelware: note: Loops: ) Y S P

Parallelware: note: Statements: 7 / 5 / 5

00000000

[09:29:24] Parallelization completed successfully
[09:29:24] Analysis completed: 8 opportunities found

U I - Build output Execution output Parallelware output Analysis completed (%)

(@ 3ppentra



Stay in touch

[] [] SIS © Souwrornosste o
TRAINE

(®) Email us at: info@appentra.com

® Download/Purchase Parallelware Trainer:
www.appentra.com/products/parallelware-trainer/

Learn more

n Appentra ’ appentra m company/appentra/

www.appentra.com



https://www.appentra.com/blog/newsletter/
mailto:info@appentra.com
https://www.appentra.com/products/parallware-trainer/
https://www.appentra.com/blog/newsletter/

Material for Trainers

- Decomposition of use cases into patterns
- Discussion of the training outcomes

\’,appentra43



s e AR
Decomposition of Pl into Patterns

Function Line Forall Scalar reduction Sparse reduction Convergence loop

main() 29 sum

\’,appentra



Decomposition of LULESH into Patterns

Function
CalcElemFBHourglassForce_workload()

CalcElemFBHourglassForce()

CalcFBHourglassForceForElems()

ApplyMaterialPropertiesForElems_workload()
ApplyMaterialPropertiesForElems()
CalcElemVelocityGradient_workload()
CalcKinematicsForElems()

luleshmk()

main()

VerifyAndWriteFinalOutput()

Line

60

73

131

187

210
217

231
258
292

349
358

365

85

Forall Scalar reduction Sparse reduction Convergence loop

sum
hgfx
hgfy
hgfz
domain_m_fx
domain_m_fy
domain_m_fz
sum

vhew
vhew

sum

domain_m_dxx domain_m_dyy
domain_m_dzz

iter (loop index)

locDom_e
locDom_m_dxx
locDom_m_dyy
locDom_m_nodelist
locDom_fx
locDom_fy
locDom_fz

locDom_m_dzz
vhew

MaxAbsDiff
TotalAbsDiff
MaxRelDiff



HANDS-ON LAB: a walkthrough

e Launch Parallelware Trainer:

o Login to the remote machine:  boada.ac.upc.edu
Connect using your account “nct010XX” (e.g. nct01026 - nct01055):
$ ssh -YX <username>@boada.ac.upc.edu

o Launch Trainer:
$ /scratch/nas/1/marenaz/pwtrainer-0.5.3-x86_64-linux-ubuntu-14.04/pwtrainer &

e Run the Pi calculation example:

o Copy the sample codes to your $HOME directory in boada:
$ ¢p /scratch/nas/1/marenaz/samples.tgz SHOME
o Open the Pl project following instructions in the worksheet.

(@ 3ppentra


mailto:patcXX@boada.ac.upc.edu

HANDS-ON LAB

Remote execution on “mt1.bsc.es” @BSC using SLURM

Add ssh key to avoid asking for password
m boada$ ssh-keygen// Generates new SSH key (press ENTER three times)
m boada$ ssh-copy-id <username>@mt1.bsc.es // Transfer new SSH key to mt1.bsc.es

Edit script “./samples/remote_on_mt1.config”
m  Set“REMOTE_USER=<USERNAME>" // Your account “NCTO10xx” at PATC
m Make sure variable “REMOTE_HOST=mt1.bsc.es”

Profile setup:Open the setup of the “Parallel” execution console

m Select “remote_run_on_mt1.sh” in “Custom execution script”
m Runthe project (press Fé or click “Play” button)

DEMO with REMOTE

(@ 3ppentra

execution!!



