
Deusto Course Guide

OmpSs@FPGA Team

December 12, 2018

Index

Index 1

1 Course Environment 2
1.1 Hard Disk: Ubuntu system and code . 2
1.2 Docker: Cross-compilation environment . 2

1.2.1 Login in the container . 2
1.2.2 Sharing data between host Ubuntu system and docker cotainer 3
1.2.3 Cross-compiling . 3
1.2.4 Vivado HLS analysis . 4

1.3 Zynq Board System . 5
1.3.1 Boot from SD . 5
1.3.2 Minicom Connection . 5
1.3.3 Ethernet connection . 6
1.3.4 Application Execution . 6

1.4 Shutdown . 7

2 First Day 8
2.1 Cross-Correlation . 8

2.1.1 OmpSs@FPGA porting . 8
2.1.2 Overlap iterations . 9
2.1.3 Overlap iterations and Loop Latency . 10
2.1.4 Avoid Memory Conflicts and General Optimizations 10
2.1.5 Cross-correlation performance . 11
2.1.6 Software Optimizations and other tuning . 11

2.2 Hardware Instrumentation . 11
2.2.1 Default Instrumentation . 11
2.2.2 User Instrumentation . 12

3 Second Day 14
3.1 Matrix Multiply . 14

3.1.1 Overlap iterations and Avoiding Memory Conflicts 14
3.1.2 Overlaping Communications and Computations: Dataflow 15
3.1.3 MxM performance . 15
3.1.4 FPGA Blocking . 15
3.1.5 User Instrumentation . 16

1

1

Course Environment

1.1 Hard Disk: Ubuntu system and code

Ubuntu 16.04 running in the bootable Hard disk is prepared with a docker container that will help you
to cross-compile to the Zynq 7000 (zybo). Next section explains how to access to this docker container
and copy from/to files when you compile. Also, this ubuntu has the minicom application intalled to
connect via serie with the zybo (explained later). Once you have compiled you can also copy data to the
zybo using ssh (explained later).

1. Push F9/F12 to make BIOS appear.

2. Boot from the external hard disk ubuntu, password: ubuntu.

3. Work in the tutorial directory

4. Original source code should be at this directory (or provided to you by USB if you are running
your own system).

1.2 Docker: Cross-compilation environment

1.2.1 Login in the container

1. Docker container has been already created.

2. Run: sudo docker ps -a

3. Run: sudo docker start -i -a name container

2

4. You can exit the container running exit. To login in again can repeat start and attach.

1.2.2 Sharing data between host Ubuntu system and docker cotainer

1. At /home/ubuntu docker container directory you have access to the Ubuntu 16.04 host file system
(or the directory you have chosen if you run the docker image to create a new container).

2. You can cp from/to host directories to/from contanier directories, or use directly a host directory.

1.2.3 Cross-compiling

1. There is an example inside the container directory. You can look at it and based on the presentation
we have provided you, you should be able to do a naive version. Indeed, the makefile with the
course code is also prepared to compile and generate a OmpSs binary and the bitstream of the
accelerators.

2. Open/Edit the Makefile of the hackathon code and figure out if you have to add any directive or
compilation flag.

• In order to estimate the performance of your accelerators before starting the time consuming
process of generating the hardware, you can target VERSION CODE=NAME make HLS-zybo
.

• The important flag in this target is the OmpSs@FPGA compilation flag --to step=HLS, which
will make the compilation to stop after the Vivado HLS project is generated. Later we will
explain how to analyze the estimated performance.

• VERSION CODE is an environment variable that can be defined at command line, and you can
use #ifdef in the source code to activate or deactivate parts of the source code.

3. Open/edit the program of the course code and follow the instructions explained below to start the
Hands-on.

4. In order to partially or completely compile to generate the bitstream, the computer should be
connected to the network (wireless or not).

5. Compilation take a while. Maybe you can use nohup to run the compilation so that you an continue
working in the following challenge meanwhile it is compiling.

6. Remember:

• For partial compilation:

3

VERSION_CODE=_V9_ nohup make HLS-zybo >& output_V9.txt &

• For complete compilation:

nohup make bitstream-zybo >& output.txt &

1.2.4 Vivado HLS analysis

1. After partial compilation upto step HLS, you can analyze the vivado hls project.

VERSION_CODE=_VX_ nohup make HLS-zybo >& output_VX.txt &

2. Run, for instance:

vivado_hls -p zybo__VX_/correlation_autoVivado/Vivado_HLS/accelerator_name

3. Then, click Analysis. Look for the function accelerated. You should see something similar to:

4. The important thing here is the II one can achieve per iteration. At bottom left, you can see the
names of the different loops in the code. If you add labels to your code, those labels will appear
here.

5. In the case of the plain fpga there is not pipeline at all (we didn’t specify anything), and the
latency we pay per iteration is 16 cycles per interation!!!

6. At top right, you can also observe the cycles per iterations that each loop has, and the high level
pnemotecnic of the operations.

• Yellow: indicates overall latency per iteration

• Red: indicates conflicts. You can click the red cycles to see where the conflits are.

4

1.3 Zynq Board System

1.3.1 Boot from SD

1. BE SURE your board is turned off

2. Insert the microSD card in the board

3. Connect the board to the power supplier

4. Connect the microUSB side of the microUSB-USB cable to UART connection.

5. Connect the USB side of the microUSB-USB cable to the computer.

6. Turn on the board

7. Run dmesg in your computer and look for something like: ”.... ttyACM0: USB ACM device...

” or ”.... ttyUSB0 ” . This is what you have to use to setup the minicom port.

1.3.2 Minicom Connection

1. Assuming that you have seen ttyACM0 in the dmesg log, run ”sudo minicom -D /dev/ttyACM0

-b 115200”

2. At login use ubuntu:ubuntu .

5

3. The Zynq System is also running an Ubuntu 16.04.

4. Look at the date. If this is not the current one, you can run sudo date -s "DD MMM YYYY

HH:MM:SS" so that you can set the current day and hour. DD stands for Day, MMM stands
for the first three letter of the month, YYYY stands for the year, and HH:MM:SS stands for hour,
minutes, seconds.

1.3.3 Ethernet connection

You can access through ethernet connection using ssh to connect to the board or scp to copy data to/from
the host. This will be useful to transfer files between host Ubuntu system and Zynq system.

1. First, from the minicom connection run sudo ifup eth0. Usually, it is 10.42.0.220.

• Login: The IP obtained in previous steps is the one you can use to ssh or scp.

• Assuming IP: 10.42.0.220 run ssh -X ubuntu@10.42.0.220 if you want to remotely login

• Copy host to zybo: scp files ubuntu@10.42.0.220:path

• Copy zedobard to host: scp ubuntu@10.42.0.220:path/file

1.3.4 Application Execution

1. First, do a complete compilation in the Docker container:

6

nohup make bitstream-zybo>& output.txt &

2. Then, transfer the following files from the Host system to the Zynq system:

• ARM binary file, at the current compilation directory.

• Bitstream (.bin) : this file should be under the zybo/correlation autoVivado/ and it is the
bitstream that we have to write in the FPGA device.

• name.xtasks.config : this file should be under the zybo/correlation autoVivado/ and it is
the configuration runtime file that is necessary when running the program.

3. Login into the Zynq System

4. Do the following steps:

• Run: cat bitstream.bin > /dev/xdevcfg

• Run: NX ARGS="--summary" ./program arguments

1.4 Shutdown

1. Correctly shutdown the machine with sudo halt or sudo shutdown now.

7

2

First Day

2.1 Cross-Correlation

Tides are sea level changes caused by the gravitational influence of the Sun and the Moon.
Locations with similar tide waveforms will attain higher levels of data correlation. Correlation will be

close to 1.0 if the signals are in synchrony, while correlation will be close to -1.0 if signals are in opposition.
Locations with unrelated tide waveforms will get lower levels of data correlation (lower values, positive or
negative, but closer to 0.0). Therefore, using a cross-correlation we want to check whether tide wafeforms
are equivalent across the planet Earth. The UNESCO Intergovernmental Oceanographic Commission
(IOC) publishes online nearly-live data from various providers. We provide you with some input data
that you can use to check the correctness of your code.

Are the tide waveforms equivalent in the various places on Earth? We have the correlation.c

program that computes the correlation between the data stored in two TXT files. Compile and run this
application. You will see that it is provided with two TXT files as arguments. Use, for example:

./correlation datafiles/ibiz-30.txt datafiles/tarr-30.txt

...

correlation is 0.90

...

./correlation datafiles/ibiz-30.txt datafiles/barc-30.txt

...

correlation is 0.86

...

Let’s see how we can implement such a function... in the FPGA. Look at the source code of the
application (correlation.c) and try to understand how it works. Now, you should be ready to proceed
with the first Exercise.

2.1.1 OmpSs@FPGA porting

Implement the correlation function for the FPGA inside the correlation.c file. In order to do so, let’s see
the interface of the function:

void corr_fpga(float * v1, float mean_v1, int n1,

float * v2, float mean_v2, int n2,

float * co, int * delay_co);

The corr fpga function receives two arrays of floating point values, the mean values precomputed
from them, and the numbers of elements contained on each of them. As a result, the function returns
the correlation between the values of the two arrays, and the delay computed.

The function should compute the correlation between these two arrays of data. Each array has been
loaded from one of the TXT files provided as parameters, so the final result will be the correlation
between the waveforms in both locations.

8

When compiling the source code to the bitstream, the compilation process will take 30 minutes, also
depending on the host computer.

But... although the Makefile is already prepared to generate the application binary and the bitstream
for the FPGA, it is not prepared yet to just reach the HLS step. In order to avoid the long compilation
time now, we ask you to just analyze the performance estimation of the accelerator, before generating
the full hardware, by compiling upto the HLS synthesis.

Then, compile the application until the HLS synthesis step (look at the information above about the
environment, compilation, analysis and execution). You should use:

VERSION_CODE=V0 make HLS-zybo # it will fail, please keep reading

Open vivado hls project using:

vivado_hls -p zybo_V0/correlation_autoVivado/Vivado_HLS/accelerator_name

And answer the following questions:

• What is the iteration latency of the loop-i loops?

• What is the pipeline achieved in each loop?

• What is the Vivado directive that you should use in order to force any pipeline in the loops?

2.1.2 Overlap iterations

Now you will need to annotate the function with the OmpSs target and task directives (see the annotation
of the function corr plain as an example), and add an HLS directive (#pragma HLS PIPELINE II=1)
in the innermost loop i (the nested one under delay loop).

Then, compile the application until the HLS synthesis step (look at the information above about the
environment, compilation, analysis and execution). You should use:

VERSION_CODE=V1 make HLS-zybo # it will fail, please keep reading

Open vivado hls project using:

vivado_hls -p zybo_V1/correlation_autoVivado/Vivado_HLS/accelerator_name

And answer the following questions:

• What is the iteration latency of the loop-i loops?

• What is the pipeline achieved in the innermost loop i (nested loop within delay loop)?

• If there are n iterations in the first loop-i and the innermost loop-i (under dealy loop), what is the
overall expected latency for each loop-i?

Observe that loop i’s are taking initiation intervals (II) larger than one. This is mostly due to resource
conflicts caused by the conditional sentence in the body of the for-loop, and/or the accumulation of values
to the same variables (sx, sy, sxy), between iterations, due to the latency they have. This fact will hamper
the possibilities that the HLS compiler uses pipelining to optimize the loop. Note that the ideal situation
is when the code achieves an II=1 or equivalent in the loop i.

On the top-right window of the vivado hls view you can see red conflicts. Double click on them to
see how they affects to the II.

Compile the application to generate the bitstream for this version of the code using:

VERSION_CODE=V1 nohup make bitstream-zybo-i >& output_V1_instrumentation.out &

Compiled with instrumentation to use later

Remind: it may take more than 20 minutes

Meanwhile it is compiling... we can pass to the next point.

9

2.1.3 Overlap iterations and Loop Latency

Change the source code to increase the distance between two accumulations for those two loop i’s. This
can be usually done using several accumulators (or a vector of accumulators, NOT THE FULL SIZE
OF THE INPUT VECTOR), and splitting (strip-mining) each loop i. If you have to add new loops, it
is good to add labels to them, to identify them in the Vivado reports.

Recompile upto HLS synthesis again, and analyze with Vivado HLS the performance of loop i’s.

VERSION_CODE=V2 make HLS-zybo

Open vivado hls project using:

vivado_hls -p zybo_V2/correlation_autoVivado/Vivado_HLS/accelerator_name

And answer the following questions:

• What is the iteration latency of each loop-i loops?

• Analyze the resource conflicts to know the reason of those values of achieved II. You can also
analyze the output of OmpSs@FPGA compilation (verbose) so that you can see the Vivado HLS
messages.

• Have you reduced the overall loop latency? Can you reduce reduce the latency improving or
unrolling other loops?

Once previous full compilation has finished, compile the application to generate the bitstream for
this version of the code using:

VERSION_CODE=V2 nohup make bitstream-zybo >& output_V2.txt

Remind: it may take more than 20 minutes

Meanwhile it is compiling... we can pass to the next point.

2.1.4 Avoid Memory Conflicts and General Optimizations

Based on the previous analysis, try to reduce the latency of the loops with large latency by using #pragma

HLS unroll, and figure out if after doing that you should use
#pragma HLS ARRAY PARTITION variable=name type factor=XX

due to memory accesses conflicts. The XX factor should be equal or larger than latency of the conflict,
and usually less or equal to the number of accumulators used to make independent operations.

Recompile upto HLS synthesis again, and analyze with Vivado HLS the performance of the applica-
tion.

VERSION_CODE=V3 make HLS-zybo

Open vivado hls project using:

vivado_hls -p zybo_V3/correlation_autoVivado/Vivado_HLS/accelerator_name

And answer the following questions:

• What is the iteration latency of each loop-i loops?

• Have you realized that the select operation helps us to improve the II? It could be used in the
first loop-i if enough resources were avaliable.

Once previous full compilation has finished, compile the application to generate the bitstream for
this version of the code using:

VERSION_CODE=V3 nohup make bitstream-zybo >& output_V3.out &

Remind: it may take more than 20 minutes

10

2.1.5 Cross-correlation performance

Compute the speedup you have obtained, comparing the performance to the sequential version and
previous versions. In order to run the correlation versions you have obtained you will have to:

1. Load the bitstream:

cat correlation.bin > /dev/xdevcfg

2. Run the program:

./correlation datafiles/ibiz-30.txt datafiles/tarr-30.txt

3. Repeat for each version

2.1.6 Software Optimizations and other tuning

Based on the previous analysis, we can try to add if statement to reduce the II achieved in the first
loop-i. Also, we could reduce the number of innermost loop iterations of the loop-i (under dealy loop).
Do the modifications that you consider to potentially improve the overall performance.

Recompile upto HLS synthesis again, and analyze with Vivado HLS the performance of loop i’s.
And answer the following questions:

• Have you reduced the II value of each loop-i? Why? Do you have enough hardware resources?

• Recompile it upto HLS synthesis again for zedboard. For a zedboard, will you obtain a benefit
from introducing a if statement and reducing the innermost loop-i iterations?

2.2 Hardware Instrumentation

OmpSs@FPGA allows to do a by default basic instrumentation of the copies and execution of the
accelerators. The execution of this instrumented code, in case of activating the instrumentation at
execution time, will generate a Paraver trace that you can visualize with the Paraver tool. We have
prepared the Makefile to compile the code to have this instrumentation. Also, there is a very recent
instrumentation feature that allows the programmer to introduce user events inside the accelerator to
show up possible problems in the code.

2.2.1 Default Instrumentation

Setup the instrumentation environment:

export EXTRAE_CONFIG_FILE="extrae.xml"

Run the first version of the correlation program running on the FPGA:

NX_ARGS="--instrumentation=extrae" ./correlation datafiles/ibiz-30.txt datafiles/tarr-30.txt

This will generate a Paraver trace correlation.prv,pcf,raw. Copy those files to the docker con-
tainer and run Paraver:

wxparaver correlation.prv

Use the configuration file smp and fpga tasks.cfg to see the tasks executed in the SMP and in the
FPGA. In fact, just one correlation task is executed in each device.

11

You can zoom-in in the execution of the accelerator to see the copy in and out of the data at the
beginning and the end of the accelerator execution.

2.2.2 User Instrumentation

OmpSs@FPGA allows the programmer to insert user instrumentation to the hardware accelerators.
Although there are some limitation on the number of events to be evicted by the accelerator, it provides
to the programmer with a very useful tool. In order to insert user events we suggest to register the key
event in the main program using, for instance:

nanos_instrument_register_key_with_key(LOOP_I, "delay loop", "Delay loop iteration", true);

This call register event key ”dealy loop” with label ”Delay loop iteration” (what will appear in the
Paraver trace), and key value LOOP I. The key value ca be defined in the ”.fpga.h” header application
file. For instance:

#define LOOP_I 10000

Then, in order to mark a burst (with begin and end) in the accelerator state, we can use the following
calls. In the example, we can use burst begin and end to determine the beginning and the end of the
delay iteration:

nanos_instrument_burst_begin(LOOP_I, delay+maxdelay);

#For the beginning of the burst

nanos_instrument_burst_end(LOOP_I, delay+maxdelay);

#For the beginning of the burst

Note that we add +maxdelay to delay to avoid negative values in the events.
Use the configuration file xcorr delay loop.cfg to see the tasks executed in the SMP and in the

FPGA. In fact, just one correlation task is executed in each device.

12

13

3

Second Day

3.1 Matrix Multiply

Matrix Multiply is a common kernel that is used in several applications like the kmeans. The typical
code of the matrix multiply of two matrices A and B follows:

void matmul(elem_t *a, elem_t *b, elem_t *c) {

unsigned int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

elem_t sum = c[i*N+ j];

for (k = 0; k < N; k++) {

sum += a[i*N+ k] * b[k*N+ j];

}

c[i*N+ j] = sum;

}

}

}

We provide you the naive source code of a Tile Matrix Multiply that you can use as baseline to
compute the speedup.

3.1.1 Overlap iterations and Avoiding Memory Conflicts

In the first step we ask you to port this kernel matmulBlock to OmpSs@FPGA so that you create one
accelerator of this kernel function. Based on the previous exercises with cross-correlation, insert the
necessary Vivado HLS pragmas to achieve a good II (II=4) in loop j. Remember that you may want to
label the loops, and also do partitioning of the matrices.

Recompile upto HLS synthesis again, and analyze with Vivado HLS the performance of loop i’s.

VERSION_CODE=MXM make HLS-zybo

Open vivado hls project using:

vivado_hls -p zybo_MXM/matmul_autoVivado/Vivado_HLS/accelerator_name

To be sure that you are achieving a good II. Once you have obtain a good expected performance,
compile the application to generate the bitstream for this version of the code using:

VERSION_CODE=MxM nohup make bitstream-zybo >& output_MXM.out &

Remind: it may take more than 20 minutes

14

3.1.2 Overlaping Communications and Computations: Dataflow

Following the same idea of the presentation slides, perform a overall modification of the kernel matmul so
that it can do a dataflow implementation of a 32x32 blocking matmul. Clauses copy deps no localmem copies

allows the programmer to specify that wants to allocate memory in kernel memory space, that the run-
time performs the copy from/to user to/from this kernel memory space for input and output respectively.
Unlike previous versions, the automatically generated wrapper of the function will not declare local vari-
ables neither generate copies from/to host memory to/from local memories. In this case, it is reponsibility
of the programmer to read and write the input and output data respectively. That helps the programmer
to use the DATAFLOW Vivado HLS pragma to try to overlap computation and communications.

Recompile upto HLS synthesis again, and analyze with Vivado HLS the performance of loop i’s.

VERSION_CODE=MXM_DATAFLOW make HLS-zybo

Open vivado hls project using:

vivado_hls -p zybo_MXM_DATAFLOW/matmul_autoVivado/Vivado_HLS/accelerator_name

To be sure that you are achieving a good II.
Once you have obtain a good expected performance, compile the application to generate the bitstream

for this version of the code using:

VERSION_CODE=MxM_DATAFLOW nohup make bitstream-zybo >& output_MXM.out &

Remind: it may take more than 20 minutes

3.1.3 MxM performance

Compute the speedup you have obtained, comparing the performance to the sequential version and
previous versions for a problem size of 1024x1024. In order to run the matmul versions you have
obtained you will have to:

1. Load the bitstream:

cat matmul.bin > /dev/xdevcfg

2. Run the program:

./matmul 1024 1

3. Repeat it for each version

3.1.4 FPGA Blocking

Zybo board has a SMP with two Cortex-A9, at 666MHz. For cases where the accelerator is fast enough,
there may happen that the cores are not fast enough to feed the accelerator/s. The reason is that there is
an overhead in the creation of the tasks and copy of the input/output data that could be hiden/reduced
if the accelerator could perform the full matrix multiply from insde, without SMP neither runtime
intervention. However, there may be the need of having the input and output dependences, and that the
runtime takes care of preparing the input/output memory data to allow the accelerator to copy in/out
the data from inside the FPGA.

We ask you to create a function call matmulFull with the part of the code of the main program that
perform the tiled matrix multiply:

void matmulFull(int msize, elem_t *a, elem_t *b, elem_t *c) {

unsigned int const m2size = msize*msize;

for (unsigned int i = 0; i < msize/BSIZE; i++) {

for (unsigned int j = 0; j < msize/BSIZE; j++) {

unsigned int const ci = j*b2size + i*BSIZE*msize;

15

for (unsigned int k = 0; k < msize/BSIZE; k++) {

unsigned int const ai = k*b2size + i*BSIZE*msize;

unsigned int const bi = j*b2size + k*BSIZE*msize;

matmulBlock(&a[ai], &b[bi], &c[ci]);

}

}

}

}

Then, add the following directives to the function:

#pragma omp target device(fpga) copy_deps no_localmem_copies num_instances(1)

#pragma omp task in([msize*msize]a, [msize*msize]b) inout([msize*msize]c)

Note that we specify the overall size of the input matrices a,b and input and output matrix c, since
the runtime will take care of allocating and copying data.

On the other hand, you should remove the task and target device pragmas from the matmulBlock.
Once you have obtain a good expected performance, compile the application to generate the bitstream

for this version of the code using:

VERSION_CODE=MxM_DATAFLOW_BLOCKING nohup make bitstream-zybo >& \

output_MXM_DATAFLOW_BLOCKING.out &

Remind: it may take more than 20 minutes

Compute the speedup you have obtained, comparing the performance to the sequential version and
previous versions for a problem size of 1024x1024. In order to run the matmul versions you have obtained
you will have to:

1. Load the bitstream:

cat matmul.bin > /dev/xdevcfg

2. Run the program:

./matmul 1024 1

3. Repeat it for each version

3.1.5 User Instrumentation

Introduce user events to the blocking dataflow version of the matrix multiply so that key value is ci and
the beginning and end of each burst is just before and after the matmulBlock call. Then, generate a
trace and try to understand what you are seeing there.

16

Maybe you can try to change loops i, j and k.

17

	Index
	Course Environment
	Hard Disk: Ubuntu system and code
	Docker: Cross-compilation environment
	Login in the container
	Sharing data between host Ubuntu system and docker cotainer
	Cross-compiling
	Vivado HLS analysis

	Zynq Board System
	Boot from SD
	Minicom Connection
	Ethernet connection
	Application Execution

	Shutdown

	First Day
	Cross-Correlation
	OmpSs@FPGA porting
	Overlap iterations
	Overlap iterations and Loop Latency
	Avoid Memory Conflicts and General Optimizations
	Cross-correlation performance
	Software Optimizations and other tuning

	Hardware Instrumentation
	Default Instrumentation
	User Instrumentation

	Second Day
	Matrix Multiply
	Overlap iterations and Avoiding Memory Conflicts
	Overlaping Communications and Computations: Dataflow
	MxM performance
	FPGA Blocking
	User Instrumentation

