
1/19/2018

1

DLB: Dynamic
Load Balancing
Library

Marta Garcia-Gasulla

Victor Lopez

January 2018 Tutorial

What is Load Imbalance

� Irregular distribution of load among resources.

• Resources can be: computational, network, processing units…

�Our target: MPI load Imbalance

• MPI is the standard de facto in HPC applications

• MPI processes do not share data

� Moving data around is expensive

1/19/2018

2

Load Imbalance: Magnitude of the tragedy

� 5% difference

P
ro

ce
ss 1

 (5
5

%
)

P
ro

ce
ss 2

 (4
5

%
)1

1
 s

1
 s

� 5% difference in 1024 processes

P
ro

ce
ss 1

 (5
5

%
)

P
ro

ce
ss 2

 (4
5

%
)

P
ro

ce
ss 1

0
2

5
 (4

5
%

)

…

1
 s

1
1

 s

* 1024

1s * 1024 CPUS = 1024 s = 17 minutes of CPU

17m * 10.000 time steps = 2.844 CPU hours

P
ro

ce
ss 1

 (5
0

%
)

P
ro

ce
ss 2

 (5
0

%
)

1
0

 s

� Ideal

Load Imbalance: Measuring it

�Which application is more imbalanced?

• A) • B) • C) • D)

1/19/2018

3

Load Imbalance: Measuring it

�Our focus is to make the most efficient use of computational resources

����	�����	
 �
�
����	���	����

�����	�
��	���	����
	�

�	
∑ ����
�� !"#$%
�&'

(�)�&'
�� !"#$% �� 	∗	+���,�-

�	
./�,�0��&'

�� !"#$% ��

(�)�&'
�� !"#$% ��

• �1234�	5 � number of MPI processes

• 6+ �	execution time of process n

• 0	 8 	��	 8 	1

• �� � 1� Perfect Load Balance)

t1=3s
t2=1,5s

�� � 	
																																																																

	
� 0,75

=5
�>3= � 3 ∗ 2 � A	

=5
B1� � 3 C 1,5 � D, E

Load Imbalance: Measuring it

�Which application is more imbalanced?
• A) • B) • C) • D)

1
0

 s
5

s

	
7 ∗ 10 C 5

10 ∗ 8
� 0,9375	

�� �	
15
B1�	>3=

15
�	>3=

	
7 ∗ 5 C 10

10 ∗ 8
� 0,5625 	

4 ∗ 10 C �4 ∗ 5�

10 ∗ 8
� 0, 75	

	
10 C 5 C �6 ∗ 7,5�

10 ∗ 8
� 0,75	

1/19/2018

4

Load Imbalance: Solution from developers?

� Expensive in terms of:
• Computational resources
• Personal resources

�What happens if we change the input?

�And the hardware?

� Is it a real solution?

Load Imbalance: Where?

Running

function

Cycles per

µ second

IPC

MPI

calls

1/19/2018

5

Load Imbalance: Still searching for a solution…

�Different sources… different solutions

• Data distribution

� Redistribute � New Input, redistribute again?

• Hardware heterogeneity

� Tune specifically for architecture � New machine, tune again?

• Infrastructure

� Adapt code to infrastructure � New software or hardware, adapt again?

• Software/Hardware variability

� ???

�Our Solution: React when imbalance is happening

• We can not fight it, lets adapt!

• One solution to rule solve them all
Be water, my friend !!!

Bruce Lee

The DLB Library

1/19/2018

6

Dynamic Load Balancing - DLB

�Our objectives:

• Address all sources of imbalance

o Fine Grain, dynamic…

� How?

o Detect imbalance at runtime

o React immediately

• Real product for HPC

� Use common programming model/environment

o MPI + OpenMP

• Transparent to the application

� Runtime library

The idea: Lend When Idle (LeWI)

�Original � LeWI HPC Appl.

MPI 1

cpu1

MPI 2

cpu2 cpu3

cpu1 cpu2

cpu4

MPI call

MPI call

Shared Memory

Lend

Retrieve

HPC Appl.

MPI 1

cpu1

MPI 2

cpu2 cpu3 cpu4

MPI call

MPI call

Shared Memory

�Load balance MPI processes within a computational node
• Use computational resources of a process when not using them to speed up

another process in the same node

1/19/2018

7

LeWI: A image trace is worth a thousand words

�Original:

• 2x8

�With LeWI:

• 2x8

Computation Communication

DLB: Main concepts

� CPU (core): Minimum computing unit acknowledged by DLB, where
one thread (and only one at the same time) can run.

� Idle CPU: A CPU that is not being used to do useful computation.

�Owner: Process that owns a CPU. A process owns the resources where
it is started. A CPU can only be owned by one process at the same
time.

� Lend: When the owner of a CPU is not using it, the CPU can be lent to
the system. When a CPU is lent, a process that it is not its owner can
use it.

� Claim: When the owner of a CPU wants to use it after lending it, the
owner can claim the CPU.

�Ask for Resources: A process of the system can ask DLB for idle CPUs to
speed up its execution.

1/19/2018

8

DLB: How?

�Runtime library: DLB

• Transversal to different layers of the software stack

• Using standard mechanisms whenever possible

� Facilitate the adoption without modifying existing codes

• MPI:

� Intercept MPI calls using PMPI standard interface

• OpenMP:

� Use standard OpenMP API

� omp_set_num_threads(x)
Application

MPI

OpenMP D
LB

PMPI Interception

OMP Standard

Operating System

Hardware

PMPI Interception

�PMPI: Profiling interface for MPI

• MPI libraries implement an internal interface (PMPI) that implements the
MPI call code

• MPI calls can be redefined in a dynamic library

• The intercepting library is loaded when starting the application

� export LD_PRELOAD = libdlb_mpi.so

� The dynamically loaded library has preference

• Within the intercepted call the
corresponding PMPI function must be
called

1/19/2018

9

PMPI Interception

�Using DLB and Extrae
• Both use PMPI interface

� Integration:
• Extrae intercepts MPI calls with PMPI

• DLB API called from Extrae before and after each MPI call

• DLB does not intercept MPI calls

� export LD_PRELOAD = libdlb_mpi_instr.so

�And other profiling tools using PMPI?
• We are studding using PnMPI

� Allows n tools intercepting MPI

� An order between them must be selected

� All the tools must support PnMPI

� So far no conflicts have been found… Future Work

MPI blocking mode

�MPI is greedy in the use of CPU

• By default it will busy wait for messages/synchronizations to arrive

• If the CPU is used by the MPI process waiting for the message we can not
use it for doing useful computation by another thread.

�Different behavior for different MPI libraries

�We have two options:

• Leave all the CPUs assigned to a process but one

� export DLB_ARGS += “--lewi-mpi=no”

• Tell MPI not to busy wait

� export I_MPI_WAIT_MODE=1

� export DLB_ARGS += “--lewi-mpi”

1/19/2018

10

MPI blocking mode

� --lewi-mpi =no

� --lewi-mpi

OpenMP: Malleability

�OpenMP is malleable, we can change number of threads

• omp_set_num_threads(int x)

• But only outside a parallel region

�But some programming practices can avoid malleability:

• Program in function of the thread Id

� omp_get_thread_num(int x)

� Fear if you see this call!

• Do reductions “by hand”

� Allocate memory in function of the number of threads and each one will
reduce in its piece of data.

• Avoid these practices please!

1/19/2018

11

OpenMP: Malleability

�Use omp_set_num_threads(x)

• It can only be called outside a parallel region (says the OpenMP standard)

• Impact in DLB…

OMP PARALLEL

OMP DO

OMP DO

OMP DO

OMP PARALLEL DO

OMP PARALLEL DO

OMP PARALLEL DO

OpenMP in DLB

�Add a call to int DLB_Borrow(void) before each parallel

� int DLB_Borrow(void) will check the system for idle CPUs and
update the number of threads in case necessary

� This can be done by an automatic replacement in the code

� Latest news!
• Working in using OMPT (tracing tool for OpenMP to appear in 5.0)

�Meanwhile…

DLB_Borrow();
#pragma omp parallel do
for (i=0; i<n; i++){

compute…
…

}

int DLB_Borrow(void){
check_idle_cpus(x);
set_omp_num_threads(x);

}

1/19/2018

12

Integration with Nanos++

�Nanos++: Parallel Runtime developed at BSC

• Implements OpenMP 4.5 and OmpSs

• Forerunner for OpenMP

�Mercurium: Source to source compiler developed at BSC

• Generates code for Nanos++

Integration with Nanos++

�There is no need to modify the application at all

• The runtime will call the DLB API where necessary to ask for resources or
return them

�Compile with Mercurium

�Run enabling DLB

• Mandatory: NX_ARGS+= “--enable-dlb --enable-block”

• Recommended: NX_ARGS+= “--force-tie-master”

• In some cases: NX_ARGS+= “--warmup-threads”

�Win!

1/19/2018

13

More malleability with OmpSs

�OpenMP (Fork-join model)

OMP PARALLEL

OMP PARALLEL

M
a

in

Ta
sk T TT

T T

T T

TT

T

T

T T T T

C
a

n
 a

d
ju

st
 t

h
re

a
d

s

�OmpSs(Task based)

Integration with Nanos++

�Taking advantage of the integration and increased OmpSs
malleability

• Threads are autonomous

� Fast response

� The master thread is not
a bottleneck

� Benefit from imbalances
at OmpSs level too

1/19/2018

14

Summing up to use DLB…

�export LD_PRELOAD = libdlb_mpi.so

�export DLB_ARGS = “--lewi”

� If we want to use the CPU executing the MPI calls
• export I_MPI_WAIT_MODE=1
• export DLB_ARGS += “—lewi-mpi”

� If we use Nanos++
• NX_ARGS+= “--enable-dlb --enable-block”
• NX_ARGS+= “--force-tie-master --warmup-threads”

�else
• Add DLB_Borrow() before each #pragma omp parallel

Multiple Applications

�We can share CPUs between different applications running in the
same node

�Do not need MPI

�Transparent to the user, works out of the box

1/19/2018

15

DROM
Dynamic Resource

Ownership Management

DROM: Dynamic Resource Ownership Management

�API for superior entity

• Job Scheduler

• Resource manager

• User

�Allow to change the assigned resources (CPUs) to a process

�Some possible use cases:

• A) User wants to give more priority to one of the processes in the node

• B) Job scheduler wants to start a high priority app. using the resources
allocated for an other application

• C) Application is not using the resources in a node efficiently (i.e the
bottleneck is on another node) can free them to avoid accounting.

1/19/2018

16

DROM: Use cases

�A) User:
Increase priority to
App2

� B) Job Scheduler:
Run High priority
App2 in resources
assigned to App1

� C) App1: Release 2
CPUs because not
using efficiently

App1

App2

App1

App2

App1

DROM: How to

App1

App2

App1

App2

App1

7
6

4
3
2
1
0

5

�A)

$> dlb_taskset -p pid_app2 –c 0-5

�B)

$> dlb_taskset –c 0,1 ./App2

�C)

DLB_DROM_SetProcessMask(my_pid, [0,0,1,1]);

1/19/2018

17

About DLB

� Current stable version 2.0 (January 2018)
• LeWI

� Full support of MPI.

� Full support with Nanos5 runtime.

� Support for OpenMP through API.

• DROM
� With OMPT support

• Mode of communication with runtimes:

� Asynchronous

� Polling

� Callback system: Ease of integration

• New DLB API

� Refactored

� More exhaustive

� More clear

� Free Download under LGPL-v3 license:

https://pm.bsc.es/dlb-downloads

Work in Progress

�DROM
• Implemented, evaluate performance

�OMPT
• Enable use for any OpenMP runtime supporting OMPT (OpenMP 5.0)
• Not “legal” according to the standard

� Study performance in many-core
• i.e. Intel Xeon Phi KNL 256 threads

� Runtime Monitoring Tool
• Monitor different levels and collect metrics
• Offer an API to consult metrics during execution

� Load Balancing across containers
• Studding feasibility, performance, issues and opportunities
• Docker, Singularity…

1/19/2018

18

Challenges

�Transversal to different layers, make the cooperate!!
• MPI libraries are not willing to expose the non busy wait mode

� They want all CPU cycles for them, but they are wasting them…

• OS could help handling the cores? Giving priorities?

�Change mentality from “heroism programming” to trusting the
runtime

• Applications should stop doing things “by hand”

• Let’s help them:

� By addressing their needs and offering non intrusive solutions

� By offering transversal solutions

�Malleability, malleability everywhere!!!
• Application, Programming model, job scheduler…

FAQ

1/19/2018

19

FAQ

�Why not “learn” and use previous redistribution?

�What about data locality?

�My application does not perform well with OpenMP

�What about load balance between nodes?

�Why not overload CPUS, it’s the same you do!

�How do you decide to which process CPUS go?

� I already have a load balancing algorithm within my application

�How do I know the different options in DLB?

Why not “learn” and use previous redistribution?

� There is a policy in DLB that does a “static” distribution of CPUs based
in the load of each process

• --policy=WEIGHT
� Detects iterations, based in the MPI calls pattern

� Computes an optimum distribution of CPUs

� Applies it

• Performance was much worse than LeWI � LeWI is more flexible

• Code is deprecated

�Another policy that merge the functionality of WEIGHT and LeWI was
implemented (Redistribute and Lend)

• --policy=RaL
• Performance was equal to the one obtained by LeWI

�We can recover these if we find the need

1/19/2018

20

How do you decide to which process CPUS go?

�We do not decide it, it is first come, first served

�So far, our experience is: If there is a free CPU and some one
willing to use it, do it.

�But… we might implement some accounting in the future if more
actors come in… different apps, different users, different
programming models…

�We DO decide which CPU to take first…

What about data locality?

� In some kernels spawning threads to another socket can have a penalty

�We can choose with flag --lewi-affinity in DLB_ARGS
environment variable which CPU a process will acquire first when
asking for resources,,,

• any : Take the first free CPU, does not take into account topology

• nearby-first : Take first CPUs that are “affine” to me, and then the others

• spread-ifempty : Take first CPUs that are affine to me, take CPUs from
another socket only if all the CPUs in that socket are free (meaning no body is
running there)

• nearby-only : Take only CPUs that are affine to me

1/19/2018

21

My application does not perform well/it is not
parallelized with OpenMP

�Don’t worry!

� In fact usually it is the best configuration… gives more flexibility
to DLB

What about load balance between nodes?

�We do not have any solution for this yet

� It is a quite different problem

• Big difference in granularity, moving data between nodes is expensive

�But… good news is…

• We are achieving very good
results by balancing inside the
node even when running up to
1024 nodes

1/19/2018

22

I already have a load balancing algorithm
within my application

�Does it solve this?

�Fine grain + system noise

�Blue lines original application (2 different runs)

�Red lines same run with DLB (2 different runs)

Clearly visible spikes without DLB

are absorbed by DLB

How do I know the different options in DLB?

� [DLB_HOME]/bin/dlb –help

The library configuration can be set using argument s

added to the DLB_ARGS environment variable.

Possible options are listed below:

--lewi: no (bool)

--drom: no (bool)

--mode: polling [polling, a sync]

--verbose: {api:microlb:shmem:mpi_api:mpi_in tercept:stats:drom:async:ompt}

--verbose-format: node:pid:thread {node:pid:mp inode:mpirank:thread}

--instrument: yes (bool)

--instrument-counters: no (bool)

--lewi-mpi: no (bool)

--lewi-mpi-calls: all [all, barri er, collectives]

--lewi-affinity: nearby-first [any, nearb y-first, nearby-only, spread-

ifempty]

--lewi-greedy: no (bool)

--lewi-warmup: no (bool)

1/19/2018

23

Thank you

marta.garcia@bsc.es

victor.lopez@bsc.es

https://pm.bsc.es/dlb

